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The central dogma (not quite these days)
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The External RNA control consortium (ERCC) developed a
set of 92 polyadenylated (synthetic or bacterial) transcripts
that mimic natural eukaryotic mRNAs:

250-2,000 nucleotides in length

5%-51% GC content
Spiked in at various concentrations prior to library prep
Provide positive and negative controls for RNA-seq



Ambion’s two commercial mixes

Start with purified total RNA, poly(A), or rRNA-depleted RNA

1 Mix 1: Mix 2

Add Spike-In Mix 1 or Mix 2 to the RNA sample(s)

l

They contain the same 92 standards, at different
concentrations

Each group of 23 transcripts span an approx 10°
concentration range




Today | will

Evaluate the performance of the ERCC spike-in
standards

Use the spike-ins to evaluate normalization
methods that do not use them, and

See whether we can normalize RNA-seq data using
the spike-ins.

We have two very different data sets: zebrafish and
SEQC. I'll spend most of my discussion on the first.




The zebrafish project

Broad goal: To investigate mechanisms governing odorant
receptor gene expression in zebrafish. More fully, to

* Study differential expression (DE) between suitable cells
from control and gallein- zebrafish embryos

* The drug gallein inhibits GBy-protein signaling and
suppresses olfactory receptor expression.

 The cell were sorted by FACS for GFP fluorescence to
identify the subset in which a plasmid was present

* RNA-seq was done using lllumina HiSeq 2000, with
sample multiplexing and 100 bp paired-end reads.




The zebrafish dataset

3 control and 3 pools of zebrafish cells: one
library preparation for each pool

Control and libraries are paired by prep date.
For each of two sequencing runs, a multiplex pool of the 6

libraries sequenced in a single lane (Dec 1 and 20, 2012) :
2 sample types x 3 libraries x 2 runs = 12 datasets.

Ambion ERCC Spike-in Mix 1 added to the RNA prior to
library prep.

Technical aspects prior to library prep (e.g. FACS cell
sorting) cannot be captured by the spike-in controls.




Fish/ Condition Library Sequencing
Library prep. date run date
S1 1/18/2012 12/01/2012
12/20/2012

S3 1/24/2012 12/01/2012
12/20/2012

S5 1/31/2012 12/01/2012
12/20/2012

S9 Treated 1/18/2012 12/01/2012
12/20/2012

S11 Treated 1/24/2012 12/01/2012
12/20/2012

S13 Treated 1/31.2012 12/01/2012

12/20/2012




#M of mapped reads % ERCC spike-ins




ERCC spike-ins: un-normalized read
counts vs concentration (log-log)

log(count+1)
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Regression coefficients in loglinear model of
un-normalized counts vs concentration
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PC2 vs PC1 for the 12 sets

All genes
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RLE plots of the 12 sets

All genes ERCC controls

RLE = Relative Log Expression = log(count+1) — median{log(count+1)}
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Mitochondrial genes in the 6 samples
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Sample | Ctl.1  Ctl.3 Ctl5 | Trt.9 Trt.11  Trt.13

No. of Cells from FACS | 49K 29K 25K | 37K 70K 16K

Total RNA (ng) 63 81 52 49 126 31

After polyA+ from 25 ng (pg) 147 115 01 99 145 117




Run effect: Ctl. 1, run 2 vs. run 1
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Lib. prep. effect: Ctl. 3 vs. Ctl. 1, run 1
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Biological effect: Trt. 11 vs. Ctl. 1, run 2
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Summary of ERCC spikes for zebrafish data

There is a fair-good linear relationship between (log) read count
and concentration, except at the low end

The % reads mapped to the controls is highly variable between
library preparations, and deviates markedly from the nominal
proportions (seen before, Qing et al 2013)

Plots of individual counts across samples show high variability
for lower concentration spike-ins

Both the genes and the controls have similar read counts across
runs but not library preparations

The controls do not capture all technical effects (especially
library preparation)

The ERCC controls exhibit a treatment-control difference. Why?
Interaction with sample RNA? Different proportions of poly A?
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That was all about the ERCC spikes.

What about the original aim, comparing
gallein-treated zebrafish embryos to controls?




There is a problem testing trt v. ctl, so
something is needed: call it normalization

THIS IS
WITH
THE
RAW
DATA
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Can normalization help us, either
without or with the ERCC controls?

We do not discuss within sample (GC- or gene-
length) normalization, just between samples.




Between-sample normalization methods

Total Count (TC) = RPKM without the PK
Upper Quartile (UQ), Bullard et al 2010
Full Quantile (FQ), Bullard et al 2010

Trimmed Mean of M-values (TMM), Robinson &
Oshlack (2010)

Relative Log Expression (AH), Anders & Huber (2010)

Cyclic loess (CL) on MA-plots of log-counts for
pairs, or (not cyclic) on each sample w.r.t. a
synthetic reference (when on the spikes, Loven et al 2012)
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TC, UQ, TMM and AH all scale linearly

TC: by the sum of the counts;
UQ: by the upper quartile;

TMM: by the weighted mean log-ratio of each
sample to the reference (after trimming
extremes), where the sample whose UQ is
closest to the mean UQ is used as reference;

AH: by the median log-ratio of each sample to
the reference, where the geometric mean of all
samples is the reference (i.e. using the RLE plot)




Remove Unwanted Variation-2 for RNA-seq

Uses the log-linear model (GLM)
log E(Y) = Wa + XP

where Y is the matrix of gene-level read counts,

X is the design matrix of “wanted variation”, and
W is the unobserved matrix of “unwanted
variation.” We estimate W from the negative
control genes Y_based on

log E(Y,_) = Wa,




How we estimate W, and how we get Y.

As in RUV-2 for microarrays (Gagnon-Bartsch & S, Biostatistics 2012)
we use the singular value decomposition

log Y. =UAVT,
We estimate Wa_ by UA, V', where A, has the first k
singular values, and then we estimate W by UA, .

Negative control genes can be housekeeping, spike-ins or
in silico (aka empirically determined) controls. Care is
needed in this choice (see G-B&S), as it is with k.

Below we take k=1, and exclude the 5,000 most DE genes
to get empirical controls, or, we use the ERCC spikes.




Control-based normalizations

TC, UQ, TMM, AH, CL and RUV-2 can all be based only
on the ERCC spike-in controls: 59 for zebra fish, only 14
for SEQC satisfying our filter.

This gives another set of normalizations.

Only FQ has no analogue here.




Between sample normalization methods

Method All genes ERCC negative spike-ins
ZF: 59, SEQC: 14

Global-scaling
Total-count (TC)
Upper-quartile (UQ
Trimmed Mean of M values (TMM
Anders and Huber (2010) (AH)

)
)

Full-quantile (FQ) X

Cyclic-loess (CL)

RUV-2
ZF 15,839 in-silico, k =1 k=1
SEQC 16,500 in-silico, last two of Kk = 3 k=2

Genes were filtered out if there was not 2 5 reads in 22 samples.
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Results of normalizing using all genes,
and using just the ERCC controls




PC2 vs PC1 of normalized data

Using all genes Using ERCC controls
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RLE plots of normalized data
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GLM slope of concentration after normalization

Using all genes Using ERCC controls

GLM coefficient
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False positive rates across normalizations
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What’s RUV-2 doing? Choose k=2.

RUV-2: Factors of unwanted variation, k=2
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Log fold changes (treated vs control)

Using all genes Using ERCC controls

ERCC spike—-in controls
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p-value histograms (testing trt v. ctl)

Using all genes Using ERCC controls
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Summary

The ERCC spike-in controls show a high variability across replicate
samples, especially at low concentrations.

This is possibly due to differences in polyA selection efficiency.

The ERCC spike-in controls do not fully capture the library
preparation effects.

Thus, they are not effective at benchmarking normalization methods

and cannot be used to directly estimate a global normalization
factor.

Similar results were recently reported by Qing et al (2013), where
the authors show a different behavior in the ERCC controls between
polyA+ and RiboZero protocols.

RUV-2 leads to surprisingly good results when using the ERCC spike-
ins as negative controls and needs to be investigated in more detail.
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Now let’s look briefly at the SEQC data




The Sequencing Quality Control (SEQC) project is phase Il of
the MicroArray Quality Control Project (MAQC). It provides

datasets to assess the performance of platforms and algorithms.
Four different types of biological samples were used, including

Sample A. Stratagene's Universal Human Reference RNA
Sample B. Ambion's human brain reference RNA.

The samples were sequenced at several facilities (17 in total)
around the world and with different platforms (lllumina HiSeq
2000, Life Technologies, Roche 454).




Here, we consider Sample A and sequenced on the
lllumina HiSeq 2000 (101-bp paired-end reads) at the Australian
Genome Research Facility.

Four libraries were prepared for each of samples A and

Multiplex pools of the resulting eight libraries were sequenced
in eight lanes on each of two flow-cells, yielding a total of 16

replicates per library and 64 replicates per sample type.

2 samples x 4 libraries x 2 flow-cells x 8 lanes = 128 datasets.

Ambion ERCC Spike-in Mix 1 was added to Sample A, and
Mix 2 was added to prior to library preparation.




Controls in the SEQC data

In addition to the internal ERCC spike-in controls, one
can use other negative and positive controls, such as the
gRT-PCR data (~1,000 genes), and microarray measures
from the original MAQC study (Canales et al, 2006).

The SEQC datasets allow the assessments of various
technical effects (e.g., platform, facility, library
preparation, flow-cell). However, as with the original
MAQC datasets, the UHR v. comparison is rather
limited, as one cannot assess biological effects in the
presence of individual variability.




#M of mapped reads % ERCC spike-ins
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RLE plots of SEQC data

All genes

ERCC spike-ins
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These data need normalization




Plot of ERCC gene subgroup A where the
fold-change between samples A and B 4:1
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Biological differences: B4 vs A (F2, lane 8)
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Biological differences: B vs A, all lanes
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Summary of ERCC spikes for SEQC data

(exactly the same as for the zf datal)

There is a fair-good linear relationship between (log) read count
and concentration, except at the low end

The % reads mapped to the controls is highly variable between
library preparations, and deviates markedly from the nominal
proportions (seen before, Qing et al 2013)

Plots of individual counts across samples show high variability
for lower concentration spike-ins

Both the genes and the controls have similar read counts across
runs but not library preparations

The controls do not capture all technical effects (especially
library preparation)

The ERCC controls exhibit a treatment-control difference. Why?




Now let’s turn to the A vs B comparisons




Some issues with the SEQC data

Samples A and 2 are so different, it is not easy to
identify negative controls for RUV-2 to estimate W

We have other ways to estimate W, one involving
residuals, another differences between replicates

Even the ERCC spike mixes exhibit A-2 differences

Samples A and & are so different, it is hard to see
differences in discrimination between the different
normalizations in ROC curves

Nevertheless, they are there, as we see next.




Some normalization of the SEQC data is needed
for the A vs B comparison
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Comparison of normalization methods

* It’s hard to tell using ROC curves, as they all
look pretty good.

* To compare normalization methods we use
the A v. B log fold changes from gRT-PCR data
available for ~1,000 genes as truth.

We consider 10 random subsets of 4 A and
4 © replicates from the original dataset, in
order to compute Bias and Mean Squared
Error (MSE).




Normalizing using all genes
Bias and MSE of logFC estimates

BIAS = Av{RNA-seq log(FC) - QRT-pcr log(FC)}

Mean Squared Error

RAWTC UQTMM AH FQ CL RUV RAW TC UQ TMM AH FQ CL RUV




Normalizing using ERCC controls
Bias and MSE of logFC estimates

Mean Squared Error
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Conclusion from these two studies

 Don’t normalize using the ERCC controls,
or, if you, must,

 Use one of the RUV approaches,

but even then,

* You are probably better off normalizing using
all suitable genes.

* We need to look at more datasets including the
ERCC, to see how broadly our conclusions apply.
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