
Removing Unwanted Variation from 
High-throughput Omic Data  

With Johann Gagnon-Bartsch & Laurent Jacob  
UC Berkeley, WEHI & CNRS, Lyon"

"
AMSI-SSAI Lecture, ABS, August 26, 2013"

1 



 
The problem 

"
   Genomic and other omic data can be affected by 

unwanted variation.  "
"
   For example, batch effects due to time, space, 

equipment, operators, reagents, sample source, 
sample quality,  environmental conditions,…the list 
goes on…  "

"
   Also we often wish to combine data, both within and 

across platforms. Differences between studies and 
platforms need to be dealt with."
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A few examples"
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Data structure"

In each of following examples, our data has the form"
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m	
  rows	
  =	
  samples	
  
typically	
  10s,	
  100s	
  
and	
  at	
  7mes	
  1,000s	
  

n	
  columns	
  =	
  genes	
  (~20,000),	
  or	
  	
  SNPs	
  	
  
=	
  DNA	
  variants	
  (up	
  to	
  2	
  million)	
  ,	
  or	
  …	
  

m	
  

n	
  



Snapshot view  
(SVD, PCA, MDS…)"
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Data	
  matrix	
   ≈	
  

m	
  

n	
   2	
   n	
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If	
  we	
  apply	
  the	
  (suitably	
  scaled)	
  
row	
  eigenvectors	
  to	
  the	
  rows	
  of	
  
the	
  data	
  matrix,	
  we	
  get	
  2	
  values	
  	
  
for	
  each	
  sample.	
  These	
  we	
  plot,	
  
see	
  next	
  few	
  slides.	
  



Artifact (batch) can overwhelm biology  
Gene expression microarrays 

 
"

Adapted	
  from	
  Lazar	
  C	
  et	
  al.	
  	
  
Brief	
  Bioinform	
  2013	
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From: J Novembre et al. Nature 456 (2008) 

SNP	
  genotypes:	
  popula7on	
  structure	
  within	
  Europe.	
  

There	
  are	
  	
  
situa7ons	
  	
  
in	
  which	
  we	
  
would	
  like	
  to	
  
remove	
  such	
  
structure!	
  



A microarray experiment with central  
retina tissue from the rd1 mouse: 4 times x 3!

Light	
  blue:	
  2	
  months	
  
Dark	
  blue:	
  4	
  months	
  
Purple:	
  6	
  months	
  
Red:	
  	
  8	
  months	
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Very	
  severe	
  	
  
batch	
  effects	
  

rd1	
  is	
  a	
  mouse	
  model	
  of	
  re8ni8s	
  pigmentosa:	
  loss	
  of	
  rod	
  
photoreceptors,	
  followed	
  by	
  that	
  of	
  cone	
  photoreceptors	
  



 RNA-seq data: batch corresponds to plate barcode "

82 AML samples"
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PC2 vs PC1 for 12 zebrafish RNA-seq runs:  
3 treated vs 3 control  (in duplicate)"
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The	
  biology	
  is	
  	
  
not	
  evident	
  in	
  	
  
the	
  first	
  2	
  PCs	
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Nature	
  Reviews	
  Gene/cs,	
  	
  vol	
  11,	
  October	
  2010,	
  p.	
  733	
  

They	
  iden7fy	
  fatally	
  flawed	
  studies!	
  



Combining 3 experiments"

•  Three microarray gene expression experiments 
carried out at different times are all comparisons 
of the form"

             Knock-Out (3X) vs Wild-Type (3X)  "
•  All are in T-cells, and while the three KOs differ 

(Id2, Tbet, Blimp), the WT mice are the same. "
•  The idea is to combine the three experiments into 

one,  to benefit from the increased WT replication, 
and to compare the different KOs. "
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        Raw                   Quantile-normalized"
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LC-MS"

GC-MS"

Mi	
  

Illumina	
  GA-­‐2	
  
Affymetrix	
  

Agilent	
   Illumina	
  

Microarrays	
  

HiSeq	
  

MiSeq	
  



Illumina Infinium Human Methylation 
Beadchips : a special problem "
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The 27k probes are on the 450k chip. "
Wanted: to combine data from these two arrays."



Some scientific goals sought using  
gene expression microarrays and 

analogous platforms  
"

• Quantification of expression"
•  Differential Expression (DE) "
•  Classification "
•  Clustering"
•  Correlating"
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Some consequences of                
Unwanted Variation"

•  Poor quantification of expression"
•  False discoveries (type 1 errors)"
•  Missed discoveries (type 2 errors)"
•  Incorrect predictions"
•  Artificial clusters"
•  Wrong correlations"
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Aim for today "

 To describe some ways of"
 "
•  identifying and removing (i.e. adjusting for) 

unwanted factors, when aiming to achieve 
these goals, and "

•  telling whether or not it helped."
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I will begin with Differential Expression"
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The model we and others use"

 m samples, n genes, k unwanted factors"
      "
              Ym×n = Xm×pβp×n + Wm×kαk×n + εm×n      %
%
  where "
  Y is a matrix of gene expression measurments, observed,"
  X carries the factors of interest, observed,"
  β are gene coefficients, unobserved, "
  W carries unwanted factors, unobserved, "
  α  are gene coefficients, unobserved,    "
  ε are errors, unobserved."
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The model we use in pictures "
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Relation to an econometric model"

% % % %Yit = Xit’β + uit  , "
where Xit   is a p×1 vector of observable 
regressors, β is a p×1 vector of unknown 
coefficients, and uit  has a common factor structure"
% % % %uit = λi’Ft + εit  , "

where λi  is a vector of factor loadings and Ft  is a 
vector of common factors, and the  εit  are 
idiosyncratic errors, i=1,…N cross-sectional units, 
t=1,…,T time periods.   This is a model for panel 
data, Bai (2005), where interest is in estimating β. 
Often N >> T. Note the difference between the 2 models."
"



The model, 2"
      %
Our goal: for differential expression, to estimate β.%
"
Note: W is unobserved, Otherwise, this is a standard 

linear model. "
Our strategy: use factor analysis to estimate W%
"
There are identifiability issues"
•  The correlation between X and W is unknown"
•  β and α are not identifiable"
%
(The examples we use below have p=1.)"
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Identifiability: we don’t know the 
correlation of W (k=1) with X!
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Two	
  samples	
  
Each	
  dot	
  a	
  gene	
  



Some ways of dealing with these problems        
with gene expression microarrays"

•  Standard linear regression"
•  EB linear regression (ComBat)"
•  Naïve factor analysis (SVD)"
•  Full Bayes using MCMC "
•  Variational Bayes (VIBES, Infer.NET, PEER)"
•  Surrogate Variable Analysis (SVA)"
•  Linear model with sparsity (LEAPP)"
•  Mixed model analysis (ICE)"

"
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We might have genes not affected by X!
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Call	
  such	
  genes	
  nega7ve	
  controls.	
  



Our solution: Use control genes  
"

Negative controls: Assume βj = 0.%
"
Positive controls: Assume  βj ≠ 0.%

27	
  

“controls” in this context means "
“controls w.r.t. differential expression”"



Some history"

•  Lucas et al (2006) Sparse Statistical Modelling in Gene 
Expression Genomics, created covariates from PCA 
based on signal from control and housekeeping probes"

•  Behzadi et al, (2007) A component based noise 
correction method (CompCor) for BOLD and perfusion 
based fMRI Neuroimaging.Ccreated covariates from 
PCA based on signal from  “noise ROI” (white matter, 
CSF)"

•  Tradition in analytical chemistry/metabolomics: use of 
“internal standards” "
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Using the negative controls c  
 
"                          Yc = Wαc + εc "

"
Just do a factor analysis on the negative controls!"
"
Examples of negative controls "
•  housekeeping genes, "
•  spiked-in controls"
•  genes chosen carefully"

                    This works!"
29	
  



Introducing the two-step: RUV-2"

1. Do a factor analysis on Yc to estimate W.%
2. Then regress Y on X and the estimated W to get        

an estimate of β adjusted for W.%

     "
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There are many ways to do the factor analysis, including "
SVD,  the EM-algorithm, and using Infer.NET (variational "
Bayes), the last two needing a probability model."
"
SVD: Write Yc	
  =	
  UΛVT	
  ,	
  	
  then	
  put	
  W^	
  =	
  UΛk	
  ,	
  Λk	
  	
  =	
  k	
  largest.	
  
"
"



Ex: gender differences in the brain 
(Vawter et al, Neuropsychopharmacology 2004)"

•  5 men, 5 women"
•  3 brain regions (AnCing, DLPFC, Cb)"
•  Each sample done in 3 labs"
•  2 Affymetrix chip types:  HGU95a, HGU95av2"
•  There should be (5+5) × 3 × 3 = 90 arrays, but 6 

are missing, so there are just 84."
"
   We’ll ignore regions, and focus on gender. "
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Ex: gender differences in the brain, 2"

•  12,685 probe sets"
•  799 housekeeping genes, 33 spike-in negative 

controls"
•  Positive controls: genes on the Y and X chromosomes"

 There’s no connection between Y and X here and the Y 
and X in my model – they are italicised, and colored!"
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Gender differences in the brain 
# X/Y genes in the top 40 "
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Preprocessing = standard RMA"

Method	
   W/o	
  preprocessing	
   With	
  preprocessing	
  

No	
   7	
   13	
  

Regression	
   6	
   16	
  

SVA	
  (IRW)	
   6	
   17	
  

ComBat	
   14	
   17	
  

RUV2-­‐SVD	
   22	
   20	
  

RUV2-­‐EM	
   22	
   22	
  



How did we find k?"
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Possible ways   
to determine k!

•  Scree plots"
•  Quality measures/plots"
    - p-value histograms"
    - RLE plots"
•  More math"
   - hypothesis tests"
   - move beyond factor                                                    
"analysis"

•  Positive controls"
" 35	
  



Number	
  of	
  X/Y	
  genes	
  in	
  Top	
  20	
  /40	
  

Top 20                    Top 40 
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What next?"
•  We have an alternative to RUV2 called RUV4, 

which has some advantages. "
•  We have a form of RUV4 called RUVinv for 

which we do not need to estimate k. "
•  In all applications, the main issue is: what do we 

use as negative controls ? We can derive 
empirical negative control genes.  "

•  We can ridge to improve conditioning"
•  We can smooth the gene-specific variances and 

get better Type 1 error control"
Details in UC Berkeley Statistics Technical Report #820"

"
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Gender data, 4: not preprocessed"
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Method	
   #X/Y	
  in	
  top	
  100	
   Type	
  1	
  error	
  ×	
  100	
  

Unadjusted	
   10	
   0	
  
SVA-­‐IRW	
   12	
   0	
  
LEAPP	
   19	
   1	
  
ICE	
  	
   17	
   0	
  
RUV4	
  (HK)	
   29	
   12	
  
RUVinv	
  (HK)	
   26	
   7	
  
RUVinv-­‐evar	
  (HK)	
   26	
   6	
  
RUVrinv-­‐evar	
  (HK)	
   28	
   6	
  
RUVrinv-­‐evar	
  (full)	
   32	
   6	
  
RUVrinv-­‐evar	
  (emp)	
   30	
   6	
  



Relation of negative controls to 
instrumental variables"

Instruments are variables that are correlated with 
the factor of interest but uncorrelated with the error 
term (or in our case, the unwanted variation). "
They	
  can	
  be	
  used	
  to	
  obtain	
  unbiased	
  es7mates	
  of	
  the	
  
effect	
  of	
  interest	
  (in	
  our	
  case,	
  β	
  ).	
  "
Let V be a full rank m×r matrix of instruments such 
that m > r ≥ p, such that V’W = 0, and such that 
V’X is full rank. The IVLS estimator of β would be  "
  " "          %%
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[X 'V (V 'V )−1V 'X]−1X 'V (V 'V )−1V 'Y



Analogous formulae"

Alterna7vely,	
  we	
  may	
  write	
  the	
  IVLS	
  es7mator	
  as	
  
"
"
"
"
Compare	
  this	
  to	
  the	
  RUV-­‐2	
  es7mator	
  	
  
"
"
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(X 'RŴ X)
−1X 'RŴY

(X 'PVX)
−1X 'PVY



Comparison"

 With	
  IVLS	
  we	
  iden7fy	
  a	
  “safe”	
  subspace	
  using	
  instruments.	
  
Instruments	
  are	
  variables	
  that	
  we	
  assume	
  lie	
  within	
  the	
  
“safe”	
  subspace.	
  	
  
With	
  RUV-­‐2	
  we	
  iden7fy	
  a	
  “safe”	
  subspace	
  using	
  nega7ve	
  
controls.	
  Nega7ve	
  controls	
  are	
  variables	
  that	
  we	
  assume	
  lie	
  
within	
  the	
  “dangerous”	
  subspace	
  that	
  is	
  the	
  orthogonal	
  
complement	
  of	
  the	
  “safe”	
  subspace.	
  	
  
With	
  both	
  IVLS	
  and	
  RUV-­‐2	
  there	
  is	
  the	
  caveat	
  that	
  X	
  must	
  not	
  
be	
  orthogonal	
  to	
  the	
  “safe”	
  subspace.	
  	
  
In	
  the	
  case	
  of	
  IVLS,	
  this	
  means	
  that	
  V	
  must	
  be	
  reasonably	
  
correlated	
  with	
  X;	
  we	
  want	
  to	
  avoid	
  weak	
  instruments.	
  	
  
In	
  the	
  case	
  of	
  RUV-­‐2,	
  this	
  means	
  that	
  X	
  must	
  lie	
  outside	
  	
  
R(W^);	
  the	
  control	
  genes	
  must	
  not	
  be	
  influenced	
  by	
  X.	
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What next?"

•  Next I’ll give a quick look at some applications of 
these ideas to various examples."

•  In all applications, the main issue is: what do we 
use as negative controls and positive controls, if 
any. "
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MicroArray Quality Control dataset"

•  Two mRNA samples  (Stratagene Universal Human 
Reference RNA, and Ambion Human Brain RNA)"

•  Each sample was assayed 5 times at each of 6 sites 
on the Affymetrix HU133Plus2.0 platform: 60 arrays 
in all."

•  The labs at the different sites have all done a pretty 
good job on their assays. However, one lab lacked 
experience."

•  Here we let our approach discover the site effects, 
not including them as dummy variables (you will see 
why not)."
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The figure (w1) shows clear site effects  
(different colors represent different sites)"

Note the purple: 
whatever factor is 
varying from site to  
site is also varying 
within this site. 
 
Dummy variables 
would not have 
worked as well here.  
 
The effects are small. 
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Removing severe batch effects"
•  Back to our mouse model of retinitis pigmentosa 

(loss of rod and later cone photoreceptors). "

•  Initially no significantly downregulated retinal 
genes were found between 2 and 8 months (left 
volcano plot on the next slide)."

•  Using RUV (right plot on the next slide), we were 
able to find several significantly down-regulated 
retinal, even cone-specific genes, which were 
later confirmed. "
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      Standard analysis                      "
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Standard analysis           Analysis with RUV"
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Back to our 3 treatment vs 3 control  
(in duplicate)  RNA-seq zf experiment"

48	
  



PC2 vs PC1 of normalized data  
"
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  hope	
  to	
  see	
  the	
  trt	
  vs.	
  ctl	
  difference	
  wouldn’t	
  we?	
  



Back to combining 3 sets of 3 KO vs 3 WT       
T-cell microarray experiments (with same WT)"
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 Raw            Q-norm            RUVrandom"
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Summary"
   With very simple statistical methods, we can: "
"
•   Use negative control genes to estimate the 

unwanted factors,"
•  Use positive control genes or other methods to 

estimate the number of unwanted factors."
"
   With slightly more complex statistical methods, we 

can avoid estimating the number of unwanted 
factors, and relax the control gene assumption. "

   " 52	
  



In later work we"

•  Apply these differential expression ideas in other 
contexts; microarray methylation data, mass spec 
metabolomic data, RNA-seq gene expression data,…"

•  We have analogous results for prediction (classification), 
clustering and correlating"

•  We can combine different studies on the same platform 
(e.g. two or more Affymetrix studies), on similar but 
distinct platforms (e.g. Affymetrix, Agilent and Illumina 
microarray studies), and studies on totally different 
platforms, e.g. GC-MS and LC-MS metabolomic data,  
microarray and RNA-seq data. "
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Clustering or “cleaning”"
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The problem"

    We now assume we don't know X any more, 
e.g. for clustering, or cleaning a dataset. "

"
   We can still estimate W as before, using Yc , but 

then we can't do the regression step. "
  "
  We have several statistical approaches to this 

problem, details omitted. One is RUV-random."
"
"
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We know of 5 age-related mets: 3 going up, 2 going down. 
Look at volcano plots of age effects, adjusted for sex and BMI"

RUV-­‐random	
  pulls	
  two	
  	
  
mets	
  up	
  out	
  of	
  the	
  pool	
  	
  



The biological solution"

"
   Reference controls are simply technical replicates,  

but replicates whose variation might well be 
representative of the very unwanted variation we 
wish to remove. That’s going to be our hope when 
we use them. (We’ll check the results, of course.) 
Any replicates will help, but reference controls have 
a better chance of spanning the space of UV."
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Diagram illustrating a reference control 
in 6 batches of 5 samples of 2 types"
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Note	
  that	
  a	
  naïve	
  batch	
  adjustment	
  here	
  	
  
would	
  equalize	
  red	
  and	
  green,	
  on	
  average.	
  

Walker	
  et	
  al	
  BMC	
  Genomics	
  (2008)	
  



How do we use the reference control 
replicates? Simplest version."

•  Note that the reference control Ys have the same 
(unknown) X, and so their row differences Yd   satisfy"

                           Yd
 = Wdα + εd %

•  Estimate α from the svd of the left hand side, say   
α^ = EkQT, where Yd = PEQT."

•  Plug α^ into the formula  Yc = Wαc + εc  for negative 
control genes, and estimate W by linear regression."

•  Once W and α have been estimated, subtract W^α^.%
      This too works! (but we can do better)"
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