Problems

1. Consider the data points $\{(-1,2),(0,6),(1,21),(2,70)\}$.
(a) Write the interpolation polynomial using a monomial basis (Vandermonde form). The monomial basis for the polynomial space of degree n is $\left\{1, x, x^{2}, \cdots, x^{n}\right\}$. We write

$$
\mathcal{P}_{n}(\mathbb{R})=\operatorname{span}\left\{1, x, x^{2}, \cdots, x^{n}\right\}
$$

(b) Write the interpolation polynomial using a Lagrange basis (Lagrange form). Verify that it is the same polynomial as in (a) by converting to monomial basis form.
Definition 1. A set of polynomial functions $\left\{l_{i}\right\}_{i=0}^{n}$ is said to be a Lagrange basis or cardinal basis for the space of polynomials of degree n with respect to the set of distinct points $\left\{x_{i}\right\}_{i=0}^{n}$ if $l_{i}\left(x_{j}\right)=\delta_{i j}$. We have

$$
\mathcal{P}_{n}(\mathbb{R})=\operatorname{span}\left\{l_{1}(x), l_{2}(x), l_{3}(x), \cdots, l_{n}(x)\right\}
$$

2. What is the largest k for the function $f(x)=|x|$ so that $f \in C^{k}(\mathbb{R})$?
3. Let $\Omega=(0,1) \times(0,1)$ and $u: \Omega \rightarrow \mathbb{R}$ be defined as

$$
u(x, y)=x^{2}+y^{2}
$$

Compute the norms $\|u\|_{C^{1}(\bar{\Omega})}$ and $\|u\|_{L^{2}(\Omega)}$.
Hint: If $\Omega \subset \mathbb{R}^{d}$ is a bounded open set, $C^{k}(\bar{\Omega})$ denotes the set of all $u \in C^{k}(\Omega)$ such that $D^{\alpha} u$ can be extended to a continuous function on $\bar{\Omega}$, the closure of Ω, for all

$$
\alpha=\left(\alpha_{1}, \cdots, \alpha_{d}\right) \quad \text { with } \quad|\alpha| \leq k
$$

We can use the following norm for functions in $C^{k}(\bar{\Omega})$:

$$
\|u\|_{C^{k}(\bar{\Omega})}=\sum_{|\alpha| \leq k} \sup \left|D^{\alpha} u\left(x_{1}, \cdots, x_{d}\right)\right|
$$

It is standard to write $C(\bar{\Omega})$ for $C^{0}(\bar{\Omega})$ when $k=0$. Also note that

$$
\|u\|_{L^{2}(\Omega)}=\sqrt{\int_{\Omega} u^{2}\left(x_{1}, \cdots, x_{d}\right) d x_{1} d x_{2} \cdots d x_{d}}
$$

4. Derive Simpson's rule with $O\left(h^{5}\right)$ error term by using the fact that the rule is exact for x^{n} when $n=1,2$, and 3 to determine a_{0}, a_{1}, and a_{2} in the formula

$$
\int_{x_{0}}^{x_{2}} f(x) d x=a_{0} f\left(x_{0}\right)+a_{1} f\left(x_{1}\right)+a_{2} f\left(x_{2}\right)+k f^{(4)}(\xi)
$$

where $x_{1}=\left(x_{0}+x_{2}\right) / 2$ and ξ is any suitable number. Then find k by applying this integration formula for $f(x)=x^{4}$. The following numerical integration rule is called the Simpson's rule:

$$
\int_{a}^{b} g(y) d y \approx \frac{(b-a)}{6}\left[g(a)+4 g\left(\frac{a+b}{2}\right)+g(b)\right]
$$

5. Let $f \in C^{4}(a, b)$ and $x_{0} \in(a, b)$. Derive a formula to approximate $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ at $x=x_{0}$ using $f\left(x_{0}-h\right), f\left(x_{0}\right), f\left(x_{0}+h\right)$ where $x_{0}-h, x_{0}+h \in(a, b)$. Hint: consider the expression

$$
A f\left(x_{0}-h\right)+B f\left(x_{0}+h\right)+C f\left(x_{0}\right),
$$

and expand all terms in Taylor polynomials of suitable order about x_{0}, and compare with $f^{\prime}\left(x_{0}\right)$ and $f^{\prime \prime}\left(x_{0}\right)$ What are the truncation errors in these formulas?
6. The sine function has the power series definition

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} .
$$

Write a function SineTaylor.m that has input n and x and output the relative error in the partial sums

$$
S_{n}(x)=\sum_{k=0}^{n}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} .
$$

The relative error R_{n} is then defined as

$$
R_{n}=\frac{\left|\sin (x)-S_{n}(x)\right|}{|\sin (x)|} .
$$

Think of an efficient way of computing S_{n}. You can start your function file in the following way:

```
function relErr = SineTaylor(x,n)
% SineTaylor(x,n) evaluates the relative error between sin(x)
% and its n-term MacLaurin series at x
% Usage: relErr=SineTaylor(x,n)
%inputs: x point where we want to compute the error
% n number of terms in MacLaurin series
%output: relErr the relative error in approximation
```

Plot the errors for $n=2,4,6,8,10,12,14,16,18,20$ using $x=4$ using the logarithmic scale. What happens when n is large?

Solutions

1. (a) We want to find a cubic polynomial $p_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ that interpolates the data. Each interpolation point leads to a linear equation relating the four unknowns a_{0}, a_{1}, a_{2}, and a_{3} :

$$
\begin{aligned}
p_{3}(-1) & =2 \Rightarrow a_{0}-a_{1}+a_{2}-a_{3}=2 \\
p_{3}(0) & =6 \Rightarrow a_{0}=6 \\
p_{3}(1) & =21 \Rightarrow a_{0}+a_{1}+a_{2}+a_{3}=21 \\
p_{3}(2) & =70 \Rightarrow a_{0}+2 a_{1}+4 a_{2}+8 a_{3}=70 .
\end{aligned}
$$

These equations can be expressed in a matrix/vector form

$$
\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
2 \\
6 \\
21 \\
70
\end{array}\right]
$$

The polynomial in the monomial form is

$$
p(x)=6+17 / 3 x+11 / 2 x^{2}+23 / 6 x^{3} .
$$

(b) The four Lagrange basis are given by

$$
\begin{array}{r}
l_{1}(x)=-\frac{x(x-1)(x-2)}{6}, l_{2}(x)=\frac{(x-1)(x+1)(x-2)}{2}, \\
l_{3}(x)=-x\left(\frac{x}{2}+\frac{1}{2}\right)(x-2), l_{4}(x)=\frac{x\left(x^{2}-1\right)}{6} .
\end{array}
$$

The required Lagrange interpolation polynomial is

$$
p(x)=2 l_{1}(x)+6 l_{2}(x)+21 l_{3}(x)+70 L_{4}(x) .
$$

A simplification yields

$$
p(x)=6+17 / 3 x+11 / 2 x^{2}+23 / 6 x^{3} .
$$

2. Here, the function is only continuous not even differentiable at $x=0$. Thus, $k=0$.
3. 6 and $\sqrt{\frac{28}{45}}$
4. Let $h=x_{1}-x_{0}$. Thus $x_{1}=x_{0}+h$ and $x_{2}=x_{0}+2 h$. Using the fact that the formula is exact x^{n} with $n=1,2,3$, we have three equations

$$
\begin{aligned}
a_{0} x_{0}+a_{1}\left(x_{0}+h\right)+a_{2}\left(x_{0}+2 h\right) & =2 x_{0} h+2 h^{2} \quad[\text { using } f(x)=x] \\
a_{0} x_{0}^{2}+a_{1}\left(x_{0}+h\right)^{2}+a_{2}\left(x_{0}+2 h\right)^{2} & =2 x_{0}^{2} h+4 x_{0} h^{2}+\frac{8 h^{3}}{3} \quad\left[\text { using } f(x)=x^{2}\right] \\
a_{0} x_{0}^{3}+a_{1}\left(x_{0}+h\right)^{3}+a_{2}\left(x_{0}+2 h\right)^{3} & =2 x_{0}^{3} h+6 x_{0}^{2} h^{2}+8 x_{0} h^{3}+4 h^{4} \quad\left[\text { using } f(x)=x^{3}\right] .
\end{aligned}
$$

Solving these equations for a_{0}, a_{1} and a_{2}, we get

$$
a_{0}=h / 3, a_{1}=4 h / 3, a_{2}=h / 3 .
$$

Using $f(x)=x^{4}$, we get

$$
\frac{1}{5}\left(x_{2}^{5}-x_{0}^{5}\right)=\frac{h}{3}\left(x_{0}^{4}+4 x_{1}^{4}+x_{2}^{4}\right)+24 k .
$$

Hence

$$
k=\frac{1}{120}\left(x_{2}^{5}-x_{0}^{5}\right)-\frac{h}{72}\left(x_{0}^{4}+4 x_{1}^{4}+x_{2}^{4}\right) .
$$

Using $x_{1}=\left(x_{0}+h\right)$ and $x_{2}=\left(x_{0}+2 h\right)$ we get

$$
\begin{array}{r}
k=\frac{1}{120}\left(x_{0}^{5}+10 h x_{0}^{4}+40 h^{2} x_{0}^{3}+80 h^{3} x_{0}^{2}+80 h^{4} x_{0}+32 h^{5}-x_{0}^{5}\right)- \\
\frac{h}{72}\left[x_{0}^{4}+4\left(x_{0}^{4}+4 h x_{0}^{3}+6 h^{2} x_{0}^{2}+4 h^{3} x_{0}+h^{4}\right)+\left(x_{0}^{4}+8 h x_{0}^{3}+24 h^{2} x_{0}^{2}+32 h^{3} x_{0}+16 h^{4}\right)\right] .
\end{array}
$$

This simplifies to $k=-h^{5} / 90$.
5. From Taylor's Remainder theorem, we have

$$
\begin{aligned}
& f\left(x_{0}-h\right)=f\left(x_{0}\right)-h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)-\frac{h^{3}}{6} f^{\prime \prime \prime}\left(x_{0}\right)+\frac{h^{4}}{24} f^{(4)}(\xi) \\
& f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\frac{h^{3}}{6} f^{\prime \prime \prime}\left(x_{0}\right)+\frac{h^{4}}{24} f^{(4)}(\xi)
\end{aligned}
$$

We combine these equations to get

$$
\frac{1}{h^{2}}\left[f\left(x_{0}+h\right)+f\left(x_{0}-h\right)-2 f\left(x_{0}\right)\right]=f^{\prime \prime}\left(x_{0}\right)+O\left(h^{2}\right)
$$

and

$$
\frac{1}{2 h}\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]=f^{\prime}\left(x_{0}\right)+O\left(h^{2}\right)
$$

Here we have used the big "O" notation.
6. Include the following lines of code in the function defintion.

```
r1=[0:1:n];
r2=(-1).^(r1);
Sn=sum(r2.*(x*(x.^(2*r1))./factorial(2*r1+1)));
relErr=abs(sin(x)-Sn)/abs(sin(x));
```

You can use the following piece of matlab code to plot the result.

```
idx =2:2:20;
for j=1:length(idx)
RE(j) =SineTaylor(4,idx(j));
end
loglog(idx,RE,'-*','markersize', 20);
```

