1. Consider the matrix

$$
A=\left(\begin{array}{cc}
-3 & 2 \\
2 & 0
\end{array}\right)
$$

(a) Calculate the eigenvalues and eigenvectors of $A$.
(b) Calculate the change of basis matrix from the standard basis $e_{1}=(1,0)$, $e_{2}=(0,1)$ to the basis of eigenvectors and verify that $A$ is diagonal in this basis.
(c) Verify that $\operatorname{Tr}(A)=\lambda_{1}+\lambda_{2}$ and $\operatorname{det} A=\lambda_{1} \lambda_{2}$ where $\lambda_{1}, \lambda_{2}$ are the eigenvalues of $A$.
2. Consider the linear map,

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad\left(U_{1}, U_{2}\right) \mapsto\left(U_{1}+U_{2}, 3 U_{2}, 4 U_{1}\right)
$$

(a) Write down the matrix representation of $T$ with repsect to the standard bases $e_{1}=(1,0), e_{2}=(0,1)$ for $\mathbb{R}^{2}$ and $f_{1}=(1,0,0), f_{2}=(0,1,0), f_{3}=(0,0,1)$ for $\mathbb{R}^{3}$.
(b) Calculate the kernel and range of the linear map and verify the rank-nullity theorem in this case.
3. Let $g(u, v)=\left(u v, u-v, v^{2} u\right)$ and let $f(x, y, z)=\left(x+y, e^{x-y}\right)$. Calculate the differentianls of $g, f$ and of $f \circ g$ to confirm the chain rule for the differential of $f \circ g$.
4. Let

$$
\mathbb{S}^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}, \quad C=\left\{x^{2}+y^{2}=1,-1 \leq z \leq 1\right\}
$$

be the unit 2 -sphere, and the circular, unit cylinder with axis along the $z$ direction respectively. Let

$$
\varphi(x, y, z)=\left(\sqrt{1-z^{2}} x, \sqrt{1-z^{2}} y, z\right)
$$

(a) Show that $\varphi$ maps $C$ onto $\mathbb{S}^{2}$ and bijectively between $\left\{x^{2}+y^{2}=1,-1<z<1\right\}$ and $\mathbb{S}^{2} \backslash\{(0,0, \pm 1)\}$.
(b) Show that $\varphi$ is an area-preserving map from $C$ to $\mathbb{S}^{2}$.
(c) Show that $\varphi$ is not distance preserving. That is, in general, for $\gamma$ a curve on $C$, the length $L(\gamma) \neq L(\varphi(\gamma))$.

Hint: Use cylindrical polar coordinates.
5. Let $F=(-y, x, 0)$ and let $S=\left\{(x, y, 0): x^{2}+y^{2} \leq 1\right\}$ be the unit disc in the $z=0$ plane with boundary $C=\partial S$ parametrised by

$$
C(t)=(\cos t, \sin t, 0), \quad 0 \leq t \leq 2 \pi .
$$

(a) Directly calculate $\oint_{C} F \cdot d \mathbf{s}$ without using Green's theorem, Stokes' theorem or the Divergence Theorem.
(b) Show that the unit normal to $S$ is $N=(0,0,1)$.
(c) Show that curl $F=(0,0,2)$.
(d) Directly calculate $\iint_{S}$ curl $F \cdot d \mathbf{A}$ without using Green's theorem, Stokes' theorem or the Divergence Theorem.
(e) Let $S^{\prime}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$ be the northern hemisphere. Using any method, calculate

$$
\iint_{S^{\prime}} \operatorname{curl} F \cdot d \mathbf{A} .
$$

## Solutions

1. Consider the matrix

$$
A=\left(\begin{array}{cc}
-3 & 2 \\
2 & 0
\end{array}\right)
$$

(a) Calculate the eigenvalues and eigenvectors of $A$.

The characteristic polynomial is

$$
\operatorname{det}(A-\lambda \operatorname{Id})=(-3-\lambda)(-\lambda)-4=(\lambda-1)(\lambda+4)
$$

hence

$$
\lambda_{1}=-4, \quad \lambda_{2}=1
$$

For $V_{1}$ the eigenvector associated to $\lambda_{1}=-4, V_{1} \in \operatorname{ker}(A+4 \mathrm{Id})$ and

$$
A+4 \operatorname{Id}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

which has kernel spanned by $V_{1}=(-2,1)$ which can be seen for example since row-2 is twice row- 1 and so $\operatorname{ker}(A+4 \mathrm{Id})$ is the kernel of $(x, y) \mapsto x+2 y$. For $V_{2}$ the eigenvector associated to $\lambda_{2}=1, V_{2} \in \operatorname{ker}(A-\mathrm{Id})$ and

$$
A-\mathrm{Id}=\left(\begin{array}{cc}
-4 & 2 \\
2 & -1
\end{array}\right)
$$

which has kernel spanned by $V_{2}=(1,2)$ which can be seen for example since row- 1 is the negative of twice row- 2 so $\operatorname{ker}(A-\mathrm{Id})$ is the kernel of $(x, y) \mapsto 2 x-y$.
Thus

$$
V_{1}=a\binom{-2}{1}, \quad V_{2}=b\binom{1}{2} .
$$

for any $a, b, \neq 0$.
(b) Calculate the change of basis matrix from the standard basis $e_{1}=(1,0)$, $e_{2}=(0,1)$ to the basis of eigenvectors and verify that $A$ is diagonal in this basis.

The change of basis is the inverse of $P$, the matrix of eigenvectors. So for example, taking $a=b=1$,

$$
P=\left(\begin{array}{cc}
-2 & 1 \\
1 & 2
\end{array}\right), \quad P^{-1}=-\frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
-1 & -2
\end{array}\right) .
$$

In the basis of eigenvectors, $A$ becomes

$$
D=P^{-1} A P=-\frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
-1 & -2
\end{array}\right)\left(\begin{array}{cc}
-3 & 2 \\
2 & 0
\end{array}\right)\left(\begin{array}{cc}
-2 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
-4 & 0 \\
0 & 1
\end{array}\right)
$$

(c) Verify that $\operatorname{Tr}(A)=\lambda_{1}+\lambda_{2}$ and $\operatorname{det} A=\lambda_{1} \lambda_{2}$ where $\lambda_{1}, \lambda_{2}$ are the eigenvalues of $A$.

$$
\begin{gathered}
\operatorname{Tr} A=-3+0=-4+1=\lambda_{1}+\lambda_{2} \\
\operatorname{det} A=(-3) \cdot 0-2 \cdot 2=(-4) \cdot 1=\lambda_{1} \lambda_{2} .
\end{gathered}
$$

2. Consider the linear map,

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad\left(U_{1}, U_{2}\right) \mapsto\left(U_{1}+U_{2}, 3 U_{2}, 4 U_{1}\right)
$$

(a) Write down the matrix representation of $T$ with repsect to the standard bases $e_{1}=(1,0), e_{2}=(0,1)$ for $\mathbb{R}^{2}$ and $f_{1}=(1,0,0), f_{2}=(0,1,0), f_{3}=(0,0,1)$ for $\mathbb{R}^{3}$.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3 \\
4 & 0
\end{array}\right)
$$

(b) Calculate the kernel and range of the linear map and verify the rank-nullity theorem in this case.

For the kernel, $U=\left(U_{1}, U_{2}\right) \in \operatorname{ker} A$ if and only if

$$
U_{1}+U_{2}=0, \quad 3 U_{2}=0, \quad 4 U_{1}=0
$$

if and only if $U=(0,0)$. Thus ker $A=\{(0,0)\}$.
The range is the span of

$$
V_{1}=\left(\begin{array}{l}
1 \\
0 \\
4
\end{array}\right), \quad V_{2}=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)
$$

which we could write explicitly as

$$
\left\{a_{1} V_{1}+a_{2} V_{2}:(a, b) \in \mathbb{R}^{2}\right\} .
$$

Note that $V_{1}, V_{2}$ are linearly independent. Otherwise $V_{1}=a V_{2}$ and looking at the second row, this implies that $0=3 a$ hence $a=0$, hence $V_{1}=0$ which is false. Thus $\operatorname{rnk} A=\operatorname{dim} \operatorname{rng} A=2$.
Thus we have

$$
\operatorname{dim} \operatorname{ker} A+\operatorname{rnk} A=2=\operatorname{dim} \operatorname{dom} A
$$

verifying the rank-nullity theorem.
3. Let $g(u, v)=\left(u v, u-v, v^{2} u\right)$ and let $f(x, y, z)=\left(x+y, e^{x-y}\right)$. Calculate the differentianls of $g, f$ and of $f \circ g$ to confirm the chain rule for the differential of $f \circ g$.

Directly calculating,

$$
d g=\left(\begin{array}{cc}
\partial_{u}(u v) & \partial_{v}(u v) \\
\partial_{u}(u-v) & \partial_{v}(u-v) \\
\partial_{u}\left(v^{2} u\right) & \partial_{v}\left(v^{2} u\right)
\end{array}\right)=\left(\begin{array}{cc}
v & u \\
1 & -1 \\
v^{2} & 2 u v
\end{array}\right)
$$

and

$$
d f=\left(\begin{array}{ccc}
\partial_{x}(x+y) & \partial_{y}(x+y) & \left.\partial_{z}(x+y)\right) \\
\partial_{x}\left(e^{x-y}\right) & \partial_{y}\left(e^{x-y}\right) & \partial_{z}\left(e^{x-y}\right)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 0 \\
e^{x-y} & -e^{x-y} & 0
\end{array}\right)
$$

For the composition,

$$
f \circ g(u, v)=f\left(u v, u-v, v^{2} u\right)=\left(u v+u-v, e^{u v-u+v}\right)
$$

hence

$$
\begin{aligned}
d(f \circ g) & =\left(\begin{array}{cc}
\partial_{u}(u v+u-v) & \partial_{v}(u v+u-v) \\
\partial_{u}\left(e^{u v-u+v}\right) & \partial_{v}\left(e^{u v-u+v}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
v+1 & u-1 \\
(v-1) e^{u v-u+v} & (u+1) e^{u v-u+v}
\end{array}\right)
\end{aligned}
$$

The chain rule gives $\left.d(f \circ g)\right|_{(u, v)}=\left.\left.d f\right|_{g(u, v)} \circ d g\right|_{(u, v)}$. Substituting $g(u, v)$ into $d f$ gives

$$
\left.d f\right|_{(g(u, v))}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
e^{u v-u+v} & -e^{u v-u+v} & 0
\end{array}\right)
$$

Then

$$
\begin{aligned}
\left.\left.d f\right|_{g(u, v)} \circ d g\right|_{(u, v)} & =\left(\begin{array}{ccc}
1 & 1 & 0 \\
e^{u v-u+v} & -e^{u v-u+v} & 0
\end{array}\right)\left(\begin{array}{cc}
v & u \\
1 & -1 \\
v^{2} & 2 u v
\end{array}\right) \\
& =\left(\begin{array}{cc}
v+1 & u-1 \\
(v-1) e^{u v-u+v} & (u+1) e^{u v-u+v}
\end{array}\right) \\
& =\left.d(f \circ g)\right|_{(u, v)}
\end{aligned}
$$

4. Let

$$
\mathbb{S}^{2}=\left\{x^{2}+y^{2}+z^{2}=1\right\}, \quad C=\left\{x^{2}+y^{2}=1,-1 \leq z \leq 1\right\}
$$

be the unit 2 -sphere, and the circular, unit cylinder with axis along the $z$ direction respectively. Let

$$
\varphi(x, y, z)=\left(\sqrt{1-z^{2}} x, \sqrt{1-z^{2}} y, z\right)
$$

(a) Show that $\varphi$ maps $C$ onto $\mathbb{S}^{2}$ and bijectively between $\left\{x^{2}+y^{2}=1,-1<z<1\right\}$ and $\mathbb{S}^{2} \backslash\{(0,0, \pm 1)\}$.

For $(0,0, \pm 1) \in \mathbb{S}^{2}$, given any $(u, v)$ with $u^{2}+v^{2}=1$ we have

$$
\varphi(u, v, \pm 1)=(0,0, \pm 1)
$$

hence $(0,0, \pm 1)$ is in the range of $\varphi$.
It then suffices to prove the second part. For convenience, let $\stackrel{\circ}{C}=\left\{x^{2}+y^{2}=1,-1<z<1\right\}$. We need to show $\varphi$ is a bijection between $\stackrel{\circ}{C}$ and $\mathbb{S}^{2} \backslash\{(0,0, \pm 1)\}$.
Let $(x, y, z) \in \mathbb{S}^{2} \backslash\{(0,0, \pm 1)\}$ and let $(u, v, w)=\left(\frac{x}{\sqrt{1-z^{2}}}, \frac{y}{\sqrt{1-z^{2}}}, z\right)$. Then

$$
u^{2}+v^{2}=\frac{x^{2}+y^{2}}{1-z^{2}}=\frac{1-z^{2}}{1-z^{2}}=1
$$

since $x^{2}+y^{2}+z^{2}=1$. Also $w=z \in(-1,1)$. Thus $(u, v, w) \in \stackrel{\circ}{C}$. Now,

$$
\begin{aligned}
\varphi(u, v) & =\left(\sqrt{1-w^{2}} u, \sqrt{1-w^{2}} v, w\right) \\
& =\left(\sqrt{1-z^{2}} \frac{x}{\sqrt{1-z^{2}}}, \sqrt{1-z^{2}} \frac{y}{\sqrt{1-z^{2}}}, z\right) \\
& =(x, y, z)
\end{aligned}
$$

hence $\varphi$ restricted to $\stackrel{\circ}{C}$ is onto $\mathbb{S}^{2} \backslash\{(0,0, \pm 1)\}$.
Now suppose $(x, y, z),(u, v, w) \in \stackrel{\circ}{C}$ are such that $\varphi(x, y, z)=\varphi(u, v, w)$. Then $w=z$ and $\frac{u}{\sqrt{1-w^{2}}}=\frac{x}{\sqrt{1-z^{2}}}$ hence

$$
u=\sqrt{1-w^{2}} \frac{u}{\sqrt{1-w^{2}}}=\sqrt{1-z^{2}} \frac{x}{\sqrt{1-z^{2}}}=x .
$$

Likewise $v=y$. Thus $\varphi$ is injective on $\stackrel{\circ}{C}$.
(b) Show that $\varphi$ is an area-preserving map from $C$ to $\mathbb{S}^{2}$.

Let $R \subseteq C$. We need to show that $\operatorname{Area}(\varphi(R))=\operatorname{Area}(R)$. First notice that $\operatorname{Area}(R)=\operatorname{Area}(R \cap \stackrel{\circ}{C})$ since $\stackrel{\circ}{C}$ is only missing the boundary $\left\{x^{2}+y^{2}=1, z= \pm 1\right\}$ which is the disjoint union of two curves, both of which have zero two-dimensional area. Likewise, $\operatorname{Area}(\varphi(R))=\operatorname{Area}(\varphi(R \cap \stackrel{\circ}{C})$ since $\varphi(\stackrel{\circ}{C})$ only omits the two points $(0,0, \pm 1)$ which also have zero two-dimensional area.
Thus we may restrict to $R \subseteq \stackrel{\circ}{C}$ on which $\varphi$ is a bijection.
We use cylindrical coordinates for $C$ :

$$
F(r, \theta)=(\cos \theta, \sin \theta, r): \quad-1<r<1, \quad 0<\theta<2 \pi .
$$

We have that $F$ maps bijectively onto $\stackrel{\circ}{C} \backslash\{(1,0, z):-1<z<1\}$ and so only omits a line which has zero two-dimensional area. Letting $S=F^{-1}(R)$ we have

$$
\begin{aligned}
\operatorname{Area}(R) & =\iint_{S}\left|\partial_{r} F \times \partial_{\theta} F\right| d r d \theta \\
& =\iint_{S}|(0,0,1) \times(-\sin \theta, \cos \theta, 0)| d r d \theta \\
& =\iint_{S} d r d \theta
\end{aligned}
$$

On the other hand, $\varphi \circ F$ only omits the curve $\left\{\left(1,0, \sqrt{1-r^{2}}\right):-1<r<1\right\}$ from $\mathbb{S}^{2} \backslash\{(0,0, \pm 1)\}$ which again has zero two-dimensional area. Computing as with $C$, but this time using

$$
\varphi \circ F(r, \theta)=\left(\sqrt{1-r^{2}} \cos \theta, \sqrt{1-r^{2}} \sin \theta, r\right)
$$

we get

$$
\begin{aligned}
& \partial_{r}(\varphi \circ F)=\left(\frac{-r \cos \theta}{\sqrt{1-r^{2}}}, \frac{-r \sin \theta}{\sqrt{1-r^{2}}}, 1\right) \\
& \partial_{\theta}(\varphi \circ F)=\left(-\sqrt{1-r^{2}} \sin \theta, \sqrt{1-r^{2}} \cos \theta, 0\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
\operatorname{Area}(\varphi(R)) & =\iint_{S}\left|\partial_{r}(\varphi \circ F) \times \partial_{\theta}(\varphi \circ F)\right| d r d \theta \\
& =\iint_{S}\left|\left(-\sqrt{1-r^{2}} \cos \theta,-\sqrt{1-r^{2}} \sin \theta,-r\right)\right| d r d \theta \\
& =\iint_{S} d r d \theta
\end{aligned}
$$

Thus Area $(R)=\operatorname{Area}(\varphi(R))$ and hence $\varphi$ is area preserving.
(c) Show that $\varphi$ is not distance preserving. That is, in general, for $\gamma$ a curve on $C$, the length $L(\gamma) \neq L(\varphi(\gamma))$.

Let $\gamma(t)=(1,0, t) \in C$ for $t \in[-1,1]$. Then

$$
L(\gamma)=\int_{-1}^{1}\left|\gamma^{\prime}(t)\right| d t=\int_{-1}^{1} d t=2
$$

One the other hand, $\varphi \circ \gamma(t)=\left(\sqrt{1-t^{2}}, 0, t\right)$ hence

$$
L(\varphi(\gamma))=\int_{-1}^{1}\left|\left(\frac{-t}{\sqrt{1-t^{2}}}, 0,1\right)\right| d t=\int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} d t=\pi
$$

Thus for this particular $\gamma, L(\gamma) \neq L(\varphi(\gamma))$ hence $\varphi$ is not distance preserving.
5. Let $F=(-y, x, 0)$ and let $S=\left\{(x, y, 0): x^{2}+y^{2} \leq 1\right\}$ be the unit disc in the $z=0$ plane with boundary $C=\partial S$ parametrised by

$$
C(t)=(\cos t, \sin t, 0), \quad 0 \leq t \leq 2 \pi
$$

(a) Directly calculate $\oint_{C} F \cdot d \mathbf{s}$ without using Green's theorem, Stokes' theorem or the Divergence Theorem.

We have

$$
\begin{aligned}
\int_{c} F \cdot d \mathbf{s} & =\int_{0}^{2 \pi}(-\sin t, \cos t, 0) \cdot(-\sin t, \cos t, 0) d t \\
& =\int_{0}^{2 \pi} d t=2 \pi
\end{aligned}
$$

(b) Show that the unit normal to $S$ is $N=(0,0,1)$.

Parametrising $S$ by $\Phi(u, v)=(u, v, 0)$ we have $\mathbf{e}_{u}=(1,0,0)$ and $\mathbf{e}_{v}=$ $(0,1,0)$ are a basis for the tangent space, hence $N=(0,0,1)$.
(c) Show that curl $F=(0,0,2)$.

$$
\operatorname{curl} F=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
-y & x & 0
\end{array}\right|=(0,0,2)
$$

(d) Directly calculate $\iint_{S}$ curl $F \cdot d \mathbf{A}$ without using Green's theorem, Stokes' theorem or the Divergence Theorem.

$$
\begin{aligned}
\iint_{S} \operatorname{curl} F \cdot d \mathbf{A} & =\iint_{S}(0,0,1) \cdot(0,0,2) d A \\
& =\iint_{S} 2 d A=2 \pi
\end{aligned}
$$

(e) Let $S^{\prime}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$ be the northern hemisphere. Using any method, calculate

$$
\iint_{S^{\prime}} \operatorname{curl} F \cdot d \mathbf{A} .
$$

By Stokes' theorem,

$$
\iint_{S^{\prime}} \operatorname{curl} F \cdot d \mathbf{A}=\int_{C} F \cdot d \mathbf{s}=\iint_{S} \operatorname{curl} F \cdot d \mathbf{A}=2 \pi
$$

