Nonlinear PDEs	Pre-Quiz	Due:

1. Consider the nonlinear system

$$
\frac{d x}{d t}=(y-x)(1-x-y) ; \quad \frac{d y}{d t}=x(2+y):
$$

(a) Determine the critical points of the system.
(b) By considering the Jacobian matrices associated with each critical point, determine their nature (saddle, proper/improper node, spiral or centre) and their stability (stable, unstable or asymptotically stable)
2. Show the working leading to a formal solution of the initial-boundary value problem.

$$
\frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0
$$

Boundary conditions:

$$
\frac{\partial u}{\partial x}(0, t)=0, \quad \frac{\partial u}{\partial x}(\pi, t)=0
$$

Initial condition:

$$
u(x, 0)=1-\sin x, \quad 0<x<\pi
$$

3. Find a solution to the boundary value problem, showing the working.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<\pi, \quad 0<y<\pi \\
& u(0, y)=0, \quad u(\pi, y)=0, \quad 0<y<\pi \\
& u(x, 0)=\sin x+\sin 3 x, \quad 0<x<\pi \\
& u(x, \pi)=0, \quad 0<x<\pi
\end{aligned}
$$

Solutions

1. Consider the nonlinear system

$$
\frac{d x}{d t}=(y-x)(1-x-y) ; \quad \frac{d y}{d t}=x(2+y):
$$

(a) Determine the critical points of the system.
$(0,0),(0,1),(3,-2),(-2,-2)$.
(b) By considering the Jacobian matrices associated with each critical point, determine their nature (saddle, proper/improper node, spiral or centre) and their stability (stable, unstable or asymptotically stable)

$$
J_{(0,0)}=\left(\begin{array}{cc}
-1 & 1 \\
2 & 0
\end{array}\right)
$$

which has eigenvalues $-2,1$. Therefore it is a saddle and unstable.

$$
J_{(0,1)}=\left(\begin{array}{cc}
-1 & -1 \\
3 & 0
\end{array}\right)
$$

which has eigenvalues $-0.5 \pm i \sqrt{2.75}$. Therefore it is a sprial sink and stable.

$$
J_{(3,-2)}=\left(\begin{array}{cc}
5 & 5 \\
0 & 3
\end{array}\right)
$$

which has eigenvalues 5,3 . Therefore it is a source and unstable.

$$
J_{(-2,-2)}=\left(\begin{array}{cc}
-5 & 5 \\
0 & -2
\end{array}\right)
$$

which has eigenvalues $-5,-2$. Therefore it is a sink and stable.
2. Show the working leading to a formal solution of the initial-boundary value problem.

$$
\frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0
$$

Boundary conditions:

$$
\frac{\partial u}{\partial x}(0, t)=0, \quad \frac{\partial u}{\partial x}(\pi, t)=0
$$

Initial condition:

$$
u(x, 0)=1-\sin x, \quad 0<x<\pi
$$

Separate variables by putting $u(x, t)=X(x) T(t)$ in the PDE. This gives

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-3 n^{2} t} \cos n x
$$

From the initial conditions we obtain

$$
a_{0}=\frac{1}{\pi}(\pi-2)
$$

and

$$
a_{n}=\frac{4,}{\frac{4}{\pi\left(n^{2}-1\right)},} \quad n \text { is even }
$$

3. Find a solution to the boundary value problem, showing the working.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad 0<x<\pi, \quad 0<y<\pi \\
& u(0, y)=0, \quad u(\pi, y)=0, \quad 0<y<\pi \\
& u(x, 0)=\sin x+\sin 3 x, \quad 0<x<\pi \\
& u(x, \pi)=0, \quad 0<x<\pi
\end{aligned}
$$

Using separation of variables we obtain

$$
u(x, y)=\sum_{n=1}^{\infty} a_{n} \sin n x(\sinh (n(y-\pi)))
$$

The boundary conditions gives us

$$
\begin{aligned}
& a_{1}=\frac{1}{\sinh (\pi)} \\
& a_{4}=\frac{1}{\sinh (3 \pi)}
\end{aligned}
$$

and all other a_{n} are zero.

