

ACE Network Subject Information Guide

CSC2410 Computational Thinking with Python

Trimester 2, 2024

Administration and contact details

Host department	School of Mathematics, Physics and Computing	
Host institution	University of Southern Queensland	
Name of lecturer	Wencheng Yang	
Phone number	+61 7 4631 2608	
Email address	Wencheng.yang@unisq.edu.au	
Homepage	https://staffprofile.usq.edu.au/profile/wencheng-yang	
Name of honours coordinator	Joanna Turner	
Phone number	+61 7 4631 2096	
Email address	Joanna.Turner@unisq.edu.au	
Name of masters coordinator	Xiaohui Tao	
Phone number	+61 7 4631 1576	
Email address	Xiaohui.Tao@unisq.edu.au	

Subject details

Handbook entry URL	https://allendowney.github.io/ModSimPy/
Subject homepage URL	https://www.unisq.edu.au/course/specification/2023/CSC2410-
	S2-2023-ONC-TWMBA.html
Honours student hand-out URL	
Teaching period (start and end date):	Start date: 13 May 2024
	End date: 11 August 2024
Exam period (start and end date):	Start date: 12 August 2024
	End date: 18 August 2024
Contact house you would	Abours
Contact hours per week:	4 hours
ACE enrolment closure date:	
Lecture day(s) and time(s):	Wednesday 4-6pm and Thursday 12-2pm AEST
Description of electronic access	USQ Connect (Moodie)
arrangements for students (for	
example, LMS)	

Subject content

1. Subject content description

Computational thinking is a core skill across many cross disciplinary fields. Future professionals in management roles as well as data analysts need to understand fundamental computational approaches to problem solving. The topics in this course are intended to introduce students not merely to the coding of computer programs, but algorithmic thinking, data management, the methodology of computer programming, and the principles of good program design including modularity, encapsulation and abstraction. The Python language is used because of its extensive application libraries and its effectiveness and popularity as a modern programming language.

This course covers fundamental computational problem solving concepts, tools and methodologies. Students will learn how to select an appropriate data type and apply the most appropriate technical processes for a given computational problem. They will also learn how to develop modular code which conforms to the basic principles and practices of software engineering.

2. Week-by-week topic overview

Week 1:	Introduction to modelling and simulation of physical systems.
	Intro to python programming. Software setup
Week 2:	Time series data and plotting of bike share system model.
	Python fundamentals: variables, functions, conditional
	statements and loops.
Week 3:	Iterative modelling and system metrics. Python
	fundamentals: function parameters, classes and objects.
Week 4:	Incremental development. Sweeping parameters. Python
	fundamentals: function return values, loops and arrays.
Week 5:	Extract data from web page with Pandas library. Model and
	simulate constant population growth.
Week 6:	Proportional growth model.
Week 7:	Quadratic growth and equilibrium. Python fundamentals:
	common problems with functions.
Week 8:	Comparing predictions.
Week 9:	Epidemiology - modelling an epidemic. Evaluate the
	effectiveness of possible interventions.
Week 10:	Optimisation - metrics to quantify effect of a disease and
	possible interventions. Determine optimal interventions
	within fixed budget.

Week 11:	Improving the epidemic model - sweeping two parameters to
	explore relationship between them, using data to estimate
	parameters.

3. Assumed prerequisite knowledge and capabilities

Familiarity with beginner level foundational computing concepts such as variables, looping constructs and conditional statements. Ability to solve problems in the context of programming by designing, implementing, debugging, and testing a solution to a prescribed problem, verifying that the solutions meet expected criteria.

4. Learning outcomes and objectives

On successful completion of this course students should be able to:

- 1. Effectively conduct program designs including modularity, encapsulation and abstraction.
- 2.Differentiate between available data types and demonstrate their appropriate problem application.
- 3. Apply available libraries to solve problems.

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in this subject	Associated AQF Learning Outcome Descriptors for this subject
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below

Learning Outcome Descriptors at AQF Level 8

Knowledge

K1: coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines

K2: knowledge of research principles and methods

Skills

S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence

S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas

S3: cognitive skills to exercise critical thinking and judgement in developing new understanding

S4: technical skills to design and use in a research project

S5: communication skills to present clear and coherent exposition of knowledge and ideas to a variety of audiences

Application of Knowledge and Skills

A1: with initiative and judgement in professional practice and/or scholarship

A2: to adapt knowledge and skills in diverse contexts

A3: with responsibility and accountability for own learning and practice and in collaboration with others within broad parameters

A4: to plan and execute project work and/or a piece of research and scholarship with some independence

5. Learning resources

Texts/Lecture notebooks:

The course readings and lecture notebooks are available on the USQ course StudyDesk. Lectures notebooks use the Jupyter notebook format.

Software:

The course lectures, exercises and assignments use Python and Jupyter notebooks. Students are advised to install the open-source Anaconda Distribution which provides the necessary tools and libraries for the course.

6. Assessment

Exam/assignment/classwork breakdown					
Exam	50 %	Assignment	50 %	Class work	0 %

Assignment due dates	Assignment 1 (20%) 30 June 2024	Assignment 2 (30%) 11 August 2024	Click here to enter a date.	Click here to enter a date.
Approximate exam date Start date: 12 August 2024 End date: 18 August 2024			O	

Institution honours program details

Weight of subject in total honours assessment at	Click here to enter text.
host department	
Thesis/subject split at host department	Click here to enter text.
Honours grade ranges at host department	
H1	Enter range %
H2a	Enter range %
H2b	Enter range %
Н3	Enter range %

Institution masters program details

Weight of subject in total masters assessment at	Click here to enter text.
host department	
Thesis/subject split at host department	Click here to enter text.
Masters grade ranges at host department	
H1	Enter range %
H2a	Enter range %
H2b	Enter range %
Н3	Enter range %