Data Security - Pre-Quiz

Questions

Q1. Compute the binary equivalent of 67 ? Verify your answer by applying the binary to decimal conversion technique.

Q2. Compute 19^{15} mod 26 using fast exponentiation with mod algorithm.
Q3. Compute the multiplicative inverse of $7 \bmod 19$?

Solutions

Q1: To convert the decimal number 67 into binary using the division technique, you repeatedly divide the decimal number by 2 and record the remainders in reverse order. Here's the step-by-step process:

Divide 67 by 2: Quotient $=33$, Remainder $=1$
Divide 33 by 2: Quotient $=16$, Remainder $=1$
Divide 16 by 2: Quotient $=8$, Remainder $=0$
Divide 8 by 2: Quotient $=4$, Remainder $=0$
Divide 4 by 2: Quotient $=2$, Remainder $=0$
Divide 2 by 2: Quotient $=1$, Remainder $=0$
Divide 1 by 2: Quotient $=0$, Remainder $=1$
Now, write down the remainders in reverse order: 1000011. So, the binary representation of 67 is 1000011.

Verification: $1000011=1 \times 2^{6}+0 \times 2^{5}+0 \times 2^{4}+0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=64+2+1=67$

Q2: $19^{15} \bmod 26=19 \times 19^{14} \bmod 26$
$=19 \times\left(19^{2} \bmod 26\right)^{7} \bmod 26$
$=19 \times(23)^{7} \bmod 26$
$=19 \times 23 \times(23)^{6} \bmod 26$
$=19 \times 23 \times\left(23^{2} \bmod 26\right)^{3} \bmod 26$
$=19 \times 23 \times(9)^{3} \bmod 26$
$=19 \times 23 \times\left(9^{3} \bmod 26\right) \bmod 26$
$=19 \times 23 \times 1 \bmod 26$
$=21$
Q3: $\left(7^{*} x\right) \bmod 19=1$, We will search for x.

$$
\begin{array}{ll}
X=1: & 7 * 1=7(\bmod 19), \text { not equal to } 1 \\
X=2: & 7 * 2=14(\bmod 19), \text { not equal to } 1 \\
X=3: & 7 * 3=21(\bmod 19), \text { not equal to } 1 \\
X=4: & 7 * 4=28(\bmod 19), \text { not equal to } 1 \\
X=5: & 7 * 5=35(\bmod 19), \text { not equal to } 1 \\
X=6: & 7 * 6=42(\bmod 19), \text { not equal to } 1
\end{array}
$$

$X=7: \quad 7 * 7=49(\bmod 19)$, not equal to 1
$X=8: \quad 7 * 8=49(\bmod 19)$, not equal to 1
$X=9: \quad 7 * 9=63(\bmod 19)$, not equal to 1
$X=10: \quad 7 * 10=70(\bmod 19)$, not equal to 1
$X=11: 7 * 11=77(\bmod 19)$, is equal to 1
Hence, 11 is the multiplicative inverse of $7 \bmod 19$.

