Semester 1 Diagnostic Quiz, 2024
School of Mathematics and Statistics

MAST90103 Random Matrix Theory

Submission deadline:
This assignment consists of 9 pages (including this page)

Question 1

Consider five matrices $A, B \in \mathbb{C}^{N \times N}, C \in \mathbb{C}^{N \times M}, D \in \mathbb{C}^{m \times N}$, and $E \in \mathbb{C}^{M \times M}$ of dimensions $N \times N, N \times M, M \times N$ and $M \times M$, respectively. Additionally, the matrix E should be invertible. Show the following three identities for the determinant.
(a) $\operatorname{det}[A B]=\operatorname{det}[A] \operatorname{det}[B]$, prove this by the Leibniz formula of the determinant

$$
\operatorname{det}[A]=\sum_{\omega \in \mathbb{S}_{N}} \operatorname{sign}(\omega) \prod_{j=1}^{N} A_{j \sigma(j)}
$$

with \mathbb{S}_{N} the symmetric group comprising all permutations of N elements and $\operatorname{sign}(\omega)$ is +1 when ω is an even permutation and -1 when it is an odd one;
(b) $\operatorname{det}\left[\begin{array}{ll}A & C \\ D & E\end{array}\right]=\operatorname{det}\left[A-C E^{-1} D\right] \operatorname{det}[E]$, prove this by using identity (a);
(c) $\operatorname{det}\left[\mathbf{1}_{N}-C D\right]=\operatorname{det}\left[\mathbf{1}_{M}-D C\right]$, prove this by using identity (b).

Question 2

Let $X=-X^{T} \in \mathbb{R}^{N \times N}$ be a real $N \times N$ antisymmetric matrix. Prove that
(a) $\operatorname{det}[X]=0$ whenever N is odd and show in this case that 0 is an eigenvalue of X;
(b) all eigenvalues are imaginary and come in complex conjugate pairs, meaning when λ is an eigenvalue then the complex conjugate $\lambda^{*}=-\lambda$ is also an eigenvalue.
(c) if $v \in \mathbb{C}^{N}$ is an eigenvector of X to the eigenvalue λ, then v^{*} is an eigenvector of X to the eigenvalue $\lambda^{*}=-\lambda$.

Question 3

(a) Let $a, b \in \mathbb{C}$ be two fixed complex numbers and a has a positive real part $\operatorname{Re}(a)>0$. Prove the following integral:

$$
\int_{-\infty}^{\infty} \exp \left[-a x^{2}+2 b x\right] d x=\frac{\sqrt{\pi}}{\sqrt{a}} \exp \left[\frac{b^{2}}{a}\right],
$$

where \sqrt{a} is the principal value of the square root of a meaning it has a branch cut along the negative real line with the square root of a positive number being positive.
(b) Let $A \in \mathbb{R}^{3 \times 3}$ be an invertible 3×3 real matrix. Compute the Gaussian integral

$$
I(A)=\int_{\mathbb{R}^{3}} \exp \left[-x^{T} A^{T} A x\right] d^{3} x
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3}$ is a three dimensional column vector and the volume element is $d^{3} x=d x_{1} d x_{2} d x_{3}$.

End of Assignment

