Question 1

Consider a fish population, experiencing proportional harvest at rate h :

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)-h N
$$

(a) If managers keep the harvest rate consistent for a long period of time, what will be the equilibrium population N^{*} ?
(b) What level of harvest is "unsustainable"? That is, what values of h will drive the population to extinction?
(c) If the yield of the fishery is $Y=h N$, use either calculus or simulations to calculate $h_{\text {MSY }}$: the harvest rate that maximises the sustainable yield.
(d) In a programming language of your choice, simulate the evolution of a population with the following parameter values:

$$
r=1.1 ; N(0)=10 ; K=100 ; h=0.5
$$

Produce a labelled plot of $N(t)$ for $0 \leq t \leq 100$.

Question 2

Consider two sessile marine species (i.e., species that do not move as adults, such as barnacles) competing for limited space along a coastline (Figure 1).

Figure 1: Smaller barnacles (Chthamalus stellatus) and larger limpets (Patella vulgata) competing for habitat space in the intertidal zone near Newquay, Cornwall, England. (Source: Mark A. Wilson; Wikimedia)

Species 1 is a dominant competitor, which means it can supplant species 2 from any space it occupies. Let p_{1} be the fraction of the sites occupied by this species, and let the two species have equal per-capita mortality rate m and birth rate b_{1}. The dynamics of species 1 's abundance are:

$$
\frac{d p_{1}}{d t}=b_{1} p_{1}\left(1-p_{1}\right)-m p_{1}
$$

The first term on the RHS reflects the fact that a recently born individual can only survive if it is fortunate enough to find space that is unoccupied by conspecifics $\left(1-p_{1}\right)$. The second species is competitively subordinate, and therefore cannot occupy space that is taken up by either its own conspecifics, or by the dominant competitor:

$$
\frac{d p_{2}}{d t}=b_{2} p_{2}\left(1-p_{1}-p_{2}\right)-m p_{2}-b_{1} p_{1} p_{2}
$$

The final term on the RHS in this equation reflects additional mortality of species 2 , when new offspring from the dominant competitor displace existing individuals. Note that in these equations, the abundance of species 1 is unaffected by species 2 .
(a) Solve for the equilibrium of the two species, p_{1}^{*} and p_{2}^{*}, in sequence. How much of the available space in the ecosystem is unoccupied by either species at equilibrium? That is, what is $1-p_{1}^{*}-p_{2}^{*}$?
(b) Under what conditions on m and b_{i} will both species persist (i.e., will $p_{1}>0$ and $p_{2}>0$)? There should be two conditions. Try to give a one-sentence ecological interpretation of each condition.

Answers: Question 1

Consider a fish population, experiencing proportional harvest at rate h :

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)-h N
$$

(e) If managers keep the harvest rate consistent for a long period of time, what will be the equilibrium population N^{*} ?

Assume $N \neq 0$ and solve for N^{*} when $\frac{d N}{d t}=0$:

$$
\begin{gathered}
0=r\left(1-\frac{N^{*}}{K}\right)-h \\
1-\frac{N^{*}}{K}=\frac{h}{r} \\
\boldsymbol{N}^{*}=\boldsymbol{K}\left(\mathbf{1}-\frac{\boldsymbol{h}}{\boldsymbol{r}}\right)
\end{gathered}
$$

(f) What level of harvest is "unsustainable"? That is, what values of h will drive the population to extinction?

Solve for h where $N^{*}=0$:

$$
\begin{gathered}
N^{*}=K\left(1-\frac{h}{r}\right)=0 \\
1-\frac{h}{r}=0 \\
h=r
\end{gathered}
$$

This makes intuitive sense, since r is the most rapid per-capita growth rate. When the per-capita harvest rate h exceeds this value, the population can never grow.
(g) If the yield of the fishery is $Y=h N$, use either calculus or simulations to calculate h_{MSY} : the harvest rate that maximises the sustainable yield.

The sustainable yield for a given harvest rate is $Y=h N^{*}$. By differentiating yield with respect to the harvest rate, we can determine the point at which yield is maximised:

$$
\begin{gathered}
\frac{d Y}{d h}=\frac{d}{d h}\left[h K\left(1-\frac{h}{r}\right)\right]=0 \\
K-\frac{2 h}{r}=0 \\
h_{\mathrm{MSY}}=\frac{r K}{2}
\end{gathered}
$$

(h) In a programming language of your choice, simulate the evolution of a population with the following parameter values:

$$
r=1.1 ; N(0)=10 ; K=100 ; h=0.5
$$

Produce a labelled plot of $N(t)$ for $0 \leq t \leq 100$.

In Matlab, the code is:

```
function PreQuiz_Q1h()
global r NO K h
r = 1.1; % The per-capita growth rate
NO = 10; % Initial population abundance
K = 100; % Carrying capacity
h = 0.5; % Per-capita harvest rate
[T,N] = ode45(@logistic_ode,[0 100],NO);
figure(1), clf, hold on, box on
FS = 22;
plot(T,N,'linewidth',2)
ylim([0 max(N)*1.1])
ylabel('Abundance','fontsize',FS,'interpreter','latex')
xlabel('Time','fontsize',FS,'interpreter','latex')
function dndt = logistic_ode(t,n)
global r NO K h
dndt = r.*n.*(1-n/K)-h.*n;
```


Question 2

Consider two sessile marine species (i.e., species that do not move as adults, such as barnacles) competing for limited space along a coastline (Figure 1).

Species 1 is a dominant competitor, which means it can supplant species 2 from any space it occupies. Let p_{1} be the fraction of the sites occupied by this species, and let the two species have equal per-capita mortality rate m and birth rate b_{1}. The dynamics of species 1's abundance are:

$$
\frac{d p_{1}}{d t}=b_{1} p_{1}\left(1-p_{1}\right)-m p_{1}
$$

The first term on the RHS reflects the fact that a recently born individual can only survive if it is fortunate enough to find space that is unoccupied by conspecifics $\left(1-p_{1}\right)$. The second species is competitively subordinate, and therefore cannot occupy space that is taken up by either its own conspecifics, or by the dominant competitor:

$$
\frac{d p_{2}}{d t}=b_{2} p_{2}\left(1-p_{1}-p_{2}\right)-m p_{2}-b_{1} p_{1} p_{2}
$$

The final term on the RHS in this equation reflects additional mortality of species 2 , when new offspring from the dominant competitor displace existing individuals. Note that in these equations, the abundance of species 1 is unaffected by species 2 .
(c) Solve for the equilibrium of the two species, p_{1}^{*} and p_{2}^{*}, in sequence. How much of the available space in the ecosystem is unoccupied by either species at equilibrium? That is, what is $1-p_{1}^{*}-p_{2}^{*}$?

The abundance of species 1 is unaffected by species 2 , and its equilibrium can therefore be solved by itself. We assume that $p_{1}^{*} \neq 0$:

$$
\begin{gathered}
\frac{d p_{1}}{d t}=0=b_{1} p_{1}\left(1-p_{1}\right)-m p_{1} \\
m=b_{1}\left(1-p_{1}\right) \\
p 1^{*}=1-\frac{m}{b_{1}}
\end{gathered}
$$

Given this abundance for species 1 , the equilibrium for species 2 is (assuming $p_{2}^{*} \neq 0$):

$$
\begin{gathered}
\frac{d p_{2}}{d t}=0=b_{2}\left(1-p_{1}^{*}-p_{2}\right)-m-b_{1} p_{1}^{*} \\
m+b_{1}\left(1-\frac{m}{b_{1}}\right)=b_{2}\left(\frac{m}{b_{1}}-p_{2}\right) \\
p_{2}^{*}=\frac{m}{b_{1}}-\frac{b_{1}}{b_{2}}
\end{gathered}
$$

The amount of unoccupied space at equilibrium is:

$$
\begin{gathered}
s=1-p_{1}^{*}-p_{2}^{*} \\
s=1-\left(1-\frac{m}{b_{1}}\right)-\left(\frac{m}{b_{1}}-\frac{b_{1}}{b_{2}}\right) \\
s=\frac{b_{1}}{b_{2}}
\end{gathered}
$$

(d) Under what conditions on m and b_{i} will both species persist (i.e., will $p_{1}>0$ and $p_{2}>0$)? There should be two conditions. Try to give a one-sentence ecological interpretation of each condition.

The first species will persist where:

$$
\begin{gathered}
1-\frac{m}{b_{1}}>0 \\
b_{1}>m
\end{gathered}
$$

Which follows the same logic as Q1(f).
The second species will persist where:

$$
\begin{aligned}
& \frac{m}{b_{1}}-\frac{b_{1}}{b_{2}}>0 \\
& b_{2}>b_{1}\left(\frac{b_{1}}{m}\right)
\end{aligned}
$$

If the first species is persisting, then we already know that $b_{1}>m$, and hence that $\frac{b_{1}}{m}>1$. Thus the condition above demands that $b_{2}>b_{1}$ at the very least.

Our simple ecological interpretation could therefore be that (1) the dominant species must have a per-capita birth rate larger than its per-capita mortality rate, and that (2) the subordinate species must be better at reproducing than the dominant species. This is a common finding in multispecies ecological theory: for two species to coexist, they must each be better at doing something. In this case, one is better at competing, the other is better at reproducing.

