THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS STAT4528 PROBABILITY AND MARTINGALE THEORY SEMESTER 12024

 LECTURERS: BEN GOLDYS and QIYING WANG

 LECTURERS: BEN GOLDYS and QIYING WANG

 DIAGNOSTIC QUIZ

 DIAGNOSTIC QUIZ}

Questions 1. Prove that the limit

$$
\lim _{x \rightarrow 0} \sin \frac{1}{x}
$$

does not exist.
Question 2. Let E_{1}, \ldots, E_{n} be finite subsets of the set Ω. We denote by $|E|$ the number of elements in a finite set E. Prove the following
(1) $\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|$
(2) $\left|E_{1} \cup E_{2} \cup E_{3}\right|=\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right|-\left|E_{1} \cap E_{2}\right|-\left|E_{1} \cap E_{3}\right|-\left|E_{2} \cap E_{3}\right|+$ $\left|E_{1} \cap E_{2} \cap E_{3}\right|$.
(3) Using mathematical induction prove that the following holds true:

$$
\left|E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right|=\sum_{k=1}^{n}\left|E_{k}\right|-\sum_{i, j \in\{1, \ldots, n\}}\left|E_{i} \cap E_{j}\right|+\ldots+(-1)^{n+1}\left|E_{1} \cap E_{2} \cap \ldots \cap E_{n}\right| .
$$

Question 3. Let X be a binomially distributed random variable with parameters $0<p<1$ and $n \geq 1$. This means that $\operatorname{Prob}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0,1, \ldots, n$. Prove that
(1) $E(X)=n p$,
(2) $\operatorname{Var}(X)=n p(1-p)$,
(3) Let Y_{1}, \ldots, Y_{n} be independent random variables distributed Bernoulli with parameter p, i.e., $\operatorname{Prob}\left(Y_{k}=1\right)=p$, and $\operatorname{Prob}\left(Y_{k}=0\right)=1-p$ for $k=$ $1, \ldots, n$. Show that the random variable $Z=Y_{1}+\ldots+Y_{n}$ is binomially distributed with parameters p and n.
(4) Let Y_{1}, \ldots be an infinite sequence of independent random variables distributed Bernoulli with parameter p, i.e., $\operatorname{Prob}\left(Y_{k}=1\right)=p$, and $\operatorname{Prob}\left(Y_{k}=\right.$ $0)=1-p$ for $k \geq 1$. Let

$$
T=\min \left\{n \geq 1 ; Y_{n}=1\right\}
$$

if such an n exists and we put $T=\infty$ otherwise. Show that

$$
\operatorname{Prob}(T=\infty)=0 .
$$

ANSWERS

Question 1. By definition $\lim _{x \rightarrow x_{0}} f(x)$ exists if there exists a such that for every sequence $\left(x_{n}\right), x_{n} \rightarrow x_{0}$, we have

$$
\lim _{x_{n} \rightarrow x_{0}} f\left(x_{n}\right)=a
$$

Therefore, to show that the limit does not exist, it is enough to find two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, such that $x_{n} \rightarrow x_{0}, y_{n} \rightarrow x_{0}$, the limits $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ and $\lim _{n \rightarrow \infty} f\left(y_{n}\right)$ exist and

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right) \neq \lim _{n \rightarrow \infty} f\left(x_{n}\right)
$$

To this end define

$$
x_{n}=\frac{1}{\frac{\pi}{2}+2 n \pi}, \quad y_{n}=\frac{1}{\frac{3 \pi}{2}+2 n \pi} .
$$

Then $x_{n} \rightarrow 0, y_{n} \rightarrow 0$ and for every $n \geq 1$

$$
-1=\sin \frac{1}{y_{n}} \neq \sin \frac{1}{x_{n}}=1 .
$$

Since both sequences are constant we obtain

$$
-1=\lim _{n \rightarrow \infty} \sin \frac{1}{y_{n}} \neq \lim _{n \rightarrow \infty} \sin \frac{1}{x_{n}}=1
$$

Question 2.

(1) Assume first, that $E_{1} \cap E_{2}=\emptyset$. Then, the formula holds: $\left|E_{1} \cup E_{2}\right|=$ $\left|E_{1}\right|+\left|E_{2}\right|$ and a similar formula obviously holds for three disjoint sets:

$$
\begin{equation*}
\left|E_{1} \cup E_{2} \cup E_{3}\right|=\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right| . \tag{1}
\end{equation*}
$$

Since we have disjoint union

$$
E_{1} \cup E_{2}=\left[\left(E_{1} \backslash\left(E_{1} \cap E_{2}\right)\right)\right] \cup\left[\left(E_{2} \backslash\left(E_{1} \cap E_{2}\right)\right)\right] \cup\left(E_{1} \cap E_{2}\right),
$$

formula (1) gives

$$
\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{1} \cap E_{2}\right| .
$$

Moreover,

$$
E_{1}=\left(E_{1} \backslash\left(E_{1} \cap E_{2}\right)\right) \cup\left(E_{1} \cap E_{2}\right),
$$

and

$$
E_{2}=\left(E_{2} \backslash\left(E_{1} \cap E_{2}\right)\right) \cup\left(E_{1} \cap E_{2},\right.
$$

hence for $k=1,2$

$$
\left|E_{k}\right|=\left|E_{k} \backslash\left(E_{1} \cap E_{2}\right)\right|+\left|E_{1} \cap E_{2}\right|
$$

and the claim follows immediately.Of course the proof follows easily from the geometric interpretation using Venn diagrams.
(2) Note that

$$
E_{1} \cup E_{2} \cup E_{3}=\left(E_{1} \cup E_{2}\right) \cup E_{3} .
$$

Therefore, using twice part 1 of the Question we obtain

$$
\begin{align*}
\left|E_{1} \cup E_{2} \cup E_{3}\right| & =\left|E_{1} \cup E_{2}\right|+\left|E_{3}\right|-\left|\left(E_{1} \cup E_{2}\right) \cap E_{3}\right| \tag{2}\\
& =\left|E_{1}\right|+\left|E_{2}\right|+\left|E_{3}\right|-\left|E_{1} \cap E_{2}\right|-\left|\left(E_{1} \cup E_{2}\right) \cap E_{3}\right| .
\end{align*}
$$

Using the fact that

$$
\left(E_{1} \cup E_{2}\right) \cap E_{3}=\left(E_{1} \cap E_{3}\right) \cup\left(E_{2} \cap E_{3}\right)
$$

and

$$
\left(E_{1} \cap E_{3}\right) \cap\left(E_{2} \cap E_{3}\right)=E_{1} \cap E_{2} \cap E_{3},
$$

and invoking part 1 of the Question again we find that

$$
\left|\left(E_{1} \cup E_{2}\right) \cap E_{3}\right|=\left|E_{1} \cup E_{3}\right|+\left|E_{2} \cap E_{3}\right|-\left|E_{1} \cap E_{2} \cap E_{3}\right| \mid
$$

Inserting the last fromula into equation (2) we complete the proof.
(3) Use the same idea as in the proof of part 2, noting that for $n \geq 2$

$$
E_{1} \cup \cdots \cup E_{n}=\left(E_{1} \cup \cdots E_{n-1}\right) \cup E_{n}
$$

Question 3.

(1) Note first that for $k \geq 1$

$$
\begin{equation*}
\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1} \tag{3}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
E(X) & =\sum_{k=0}^{n} k \operatorname{Prob}(X=k)=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =n p \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1}(1-p)^{(n-1)-(k-1)} \\
& =n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k} \\
& =n p .
\end{aligned}
$$

The last inequality follows since $\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}$ are the binomial probabilities for a binomially distributed random variable with parameters p and $(n-1)$, hence

$$
\sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{(n-1)-k}=1
$$

(2) Let us recall first that

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2},
$$

and since for $n=1$ we have $X^{2}=X$, the formula follows from part 1 . We need to consider $n \geq 2$. Next

$$
E\left(X^{2}\right)=E[X(X-1)]+E(X)
$$

so that

$$
\begin{equation*}
\operatorname{Var}(X)=E[X(X-1)]-[E(X)]^{2}+E(X) \tag{4}
\end{equation*}
$$

. It remains to compute $E[X(X-1)]$. We will show that

$$
\begin{equation*}
E[X(X-1)]=n(n-1) p^{2} . \tag{5}
\end{equation*}
$$

Using twice equation (3) we obtain for $n \geq k \geq 2$

$$
\binom{n}{k}=\frac{n(n-1)}{k(k-1)}\binom{n-2}{k-2},
$$

hence

$$
\begin{aligned}
E[X(X-1)] & =\sum_{k=2}^{n} k(k-1) P(X=k) \\
& =\sum_{k=2}^{n} k(k-1)\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =n(n-1) p^{2} \sum_{k=2}^{n}\binom{n-2}{k-2} p^{k-2}(1-p)^{(n-2)-(k-2)} \\
& =n(n-1) p^{2} \sum_{k=0}^{n-2}\binom{n-2}{k} p^{k}(1-p)^{(n-2)-k} \\
& =n(n-1) p^{2} .
\end{aligned}
$$

Combining (4), part 1 and (5) we obtain

$$
\operatorname{Var}(X)=n(n-1) p^{2}-n^{2} p^{2}+n p=n p(1-p)
$$

as desired.
(3) Fix integers $1 \leq i_{1}<\cdots<i_{k} \leq n$ and let $1 \leq j_{1}<\cdots<j_{n}-k \leq n$ denote the remaing integers in the set $\{1, \ldots, n\}$. If $k=0$ or $k=n$ then one of these sets is empty. By independence

$$
P\left(Y_{i_{1}}=\cdots=Y_{i_{k}}=1, Y_{j_{1}}=\cdots=Y_{j_{n-k}}=0\right)=p^{k}(1-p)^{n-k}
$$

Then number of choices of k indices i_{1}, \ldots, i_{k} is equal to $\binom{n}{k}$ Then we have

$$
\begin{aligned}
P(Z=k) & =\sum_{\text {all choices of } \mathrm{i}_{1} \ldots, \mathrm{i}_{\mathrm{k}}} P\left(Y_{i_{1}}=\cdots=Y_{i_{k}}=1, Y_{j_{1}} \cdots=Y_{j_{n-k}}=0\right) \\
& =\sum_{\text {all choices of } \mathrm{i}_{1} \ldots, \mathrm{i}_{\mathrm{k}}} p^{k}(1-p)^{n-k} \\
& =\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

occurs if and only if k out of n random variables take value 1 and the remaining ($n-k$) random variables take value 0 . Eac
(4) It is enough to show that

$$
P(T<\infty)=1
$$

We have

$$
P(T<\infty)=\sum_{k=1}^{\infty} P(T=k)
$$

Clearly, $P(T=1)=P\left(Y_{1}=1\right)=p$ and for $k \geq 2$ using independence we find that

$$
P(T=k)=P\left(Y_{1}=\cdots=Y_{k-1}=0, Y_{k}=1\right)=(1-p)^{k-1} p .
$$

Therefore,

$$
P(T<\infty)=\sum_{k=1}^{\infty}(1-p)^{k-1} p=1
$$

