

ACE Network Subject Information Guide

Data Security

Semester 1, 2025

Administration and contact details

Host department	School of Information and Physical Sciences
Host institution	University of Newcastle
Name of lecturer	Dr. Saiful Islam
Phone number	0424422409
Email address	saiful.islam@newcastle.edu.au
Homepage	https://www.newcastle.edu.au/profile/saiful-islam
Name of honours coordinator	Dr Kyle Harrison
(Bachelor of Computing - Honours)	
Phone number	(02) 4055 0738
Email address	kyle.harrison@newcastle.edu.au
Name of masters coordinator	Dr. Weijia Zhang
(Master of Data Science and AI)	
Phone number	(02) 4055 0921
Email address	weijia.zhang@newcastle.edu.au

Subject details

Handbook entry URL	https://handbook.newcastle.edu.au/course/2025/COMP6360
Subject homepage URL	https://handbook.newcastle.edu.au/course/2025/COMP6360
Honours student hand-out URL	https://handbook.newcastle.edu.au/program/2025/40283
Teaching period (start and end	24 February 2025 – 6 June 2025
date):	
Exam period (start and end	10 June 2025 – 20 June 2025
date):	
Contact hours per week:	4
ACE enrolment closure date:	ТВА
Lecture day(s) and time(s):	Monday 12:00pm to 2:00pm (Lecture ONLINE)
	Tuesday 12:00pm to 2:00 pm (Workshop ONLINE)
Description of electronic access	Access will be arranged for the relevant Canvas/Catalog page
arrangements for students (for	
example, LMS)	

Son A C E C F K

Subject content

- 1. Information and number theory, finite fields
- 2. Classical cryptography
- 3. Contemporary symmetric cyphers
- 4. Public key cryptography
- 5. Key management
- 6. Authentication and digital signatures
- 7. Privacy and Privacy Enhancing Technologies
- 8. Advanced topics: Elliptic curve cryptography and homomorphic encryption
- 9. Applications: Privacy in social networks, electronic voting, digital cash

1. Week-by-week topic overview

Week 1: Introduction to Data Security, Revision: Groups, rings, fields
Week 2: Number theory,
Week 3: Information theory, perfect secrecy, unicity distance
Week 4: Classical ciphers
Week 5: Stream and block ciphers; Feistel cipher; DES and DES modes of operation
Week 6: AES; AES polynomial arithmetic
Week 7: PK Encryption, RSA, ElGamal; elliptic Curves
Week 8: Key management; message authentication
Week 9: Hash functions and digital signatures
Week 10: Selected topics in cryptography and security
Week 11: Privacy; selected topics in cryptography and security
Week 12: Privacy; selected topics in cryptography and security
Week 13: Revision

2. Assumed prerequisite knowledge and capabilities

Programming experience (Python, C/C++, Or Java) Knowledge of discrete mathematics

3. Learning outcomes and objectives

Upon completion of this course, graduates will be able to:

- 1. Break classical ciphers
- 2. Apply number and information theories to modern cryptography
- 3. Analyse and evaluate modern cryptographic systems
- 4. Design a system that will provide encryption, decryption, signature and forward security
- 5. Assess security and privacy in data publishing, social networks, electric voting and digital cash

SA A C E

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed	Associated AQF Learning Outcome
in this subject	Descriptors for this subject
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below
Insert Program Learning Outcome here	Choose from list below

Learning Outcome Descriptors at AQF Level 8
Knowledge
K1: coherent and advanced knowledge of the underlying principles and concepts in one or
more disciplines
K2: knowledge of research principles and methods
Skills
S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and
provide solutions to complex problem with intellectual independence
S2: cognitive and technical skills to demonstrate a broad understanding of a body of
knowledge and theoretical concepts with advanced understanding in some areas
S3: cognitive skills to exercise critical thinking and judgement in developing new
understanding
S4: technical skills to design and use in a research project
S5: communication skills to present clear and coherent exposition of knowledge and ideas to
a variety of audiences
Application of Knowledge and Skills
A1: with initiative and judgement in professional practice and/or scholarship
A2: to adapt knowledge and skills in diverse contexts
A3: with responsibility and accountability for own learning and practice and in collaboration
with others within broad parameters
A4: to plan and execute project work and/or a piece of research and scholarship with some
independence

4. Learning resources

W. Stallings. Cryptography and Network Security, Global Edition, Pearson Education Australia, 2016.

5. Assessment

Exam/assignment/classwork breakdown					
Final Exam	40%	Assignments	40%	In Term Test and	20%
				Weekly quizzes	
Assignment du	ie dates	Assignment 1	Assignment 2	Friday 11:59 PM	Friday 11:59
		Week 7	Week 12	of Week 7	PM of Week 12
Approximate exam date					
In Term Test		Week 5 (During Leo	cture/ONLINE)		
Final Exam			10 June 2025 – 20 J	lune 2025	

Institution honours program details – To Be Determined

Weight of subject in total honours assessment at host department	10 units of 80 total
Thesis/subject split at host department	60 units of 80 total
Honours grade ranges at host department	
H1	85 - 100%
H2a	75 – 84 %
H2b	65 – 74 %
Н3	50 – 64 %

Institution masters program details – To Be Determined

Weight of subject in total masters assessment at host department	10 units of 120 total
Thesis/subject split at host department	20 units of 120 total
Masters grade ranges at host department	
HD	85 - 100%
D	75 – 84%
С	65 – 74%
Р	50 - 64 %