

AMSI Online: Honours and Masters Subject Guide

Martingales

Semester One, 2026

Administration and contact details

Host department	School Mathematics		
Host institution	Monash University		
Name of lecturer	Prof Andrea Collevecchio (Lecturer + Chief Examiner+Applied Classes)		
Phone number			
Email address	andrea.collevecchio@monash.edu		
Homepage			
Name of honours coordinator	Dr Julie Clutterbuck		
Phone number	03 9905 4462		
Email address	julie.clutterbuck@monash.edu		
Name of masters coordinator	Dr. Greg Markowsky		
Phone number	03 9905 4487		
Email address	greg.markowsky@monash.edu		

Subject details

Handbook entry URL	TBA		
Subject homepage URL	TBA		
Honours student hand-out URL	TBA		
Teaching period (start and end date):	2 March – 29 May		
Exam period (start and end date):	8–26 Jun		
Contact hours per week:	TBA (and by appointment)		
ACE enrolment closure date:			
Lecture day(s) and time(s):			
Description of electronic access arrangements for students (for example, LMS)			

Subject content

1. Subject content description

Welcome to MTH5220! The aim of this course is to study martingale theory. In particular, we will focus on the following topics. Definition and examples of martingales. Doob's convergence theorem. Optional sampling theorem. Discrete Stochastic integral. Martingale inequalities such as Doob and Burkholder-Davis-Gundy inequalities. We will emphasise applications of martingales to other fields and real-life problems. Bucy-Kalman filter. Applications to finance: Option pricing - discrete Black-Scholes formula. Control theory.

2. Week-by-week topic overview

Introduction to martingales, super (sub) martingales. Examples and overview of the unit.

More examples and motivation.

Optional Sampling Theorem.

Stopping times, Stochastic Integral (discrete version) Applications.

Doob Convergence Theorem. Applications.

Inequalities I

Inequalities II

Uniform Integrability I

Uniform Integrability II (generalization of dominated convergence theorem)

Kakutani Theorem

Austin and Burkholder Theorems and applications.

Review and more applications.

3. Assumed prerequisite knowledge and capabilities

Second year probability unit. It would be good if the student has some familiarity with stochastic processes.

4. Learning outcomes and objectives

On successful completion of this unit, you should be able to:

1.

Develop specialised mathematical knowledge and skills within the theory of martingales.

2.

Apply sophisticated stochastic modelling skills within a variety of contexts, from population biology to finance to management science, and more.

3.

Apply critical thinking to problems in discrete-time stochastic processes in general, and in the theory of discrete-time martingales in particular.

4.

Formulate expert solutions to practical financial, engineering or scientific problems using specialised cognitive technical skills within the theory of discrete-time martingales.

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes addressed in	Associated AQF Learning Outcome Descriptors
this subject	for this subject
1	K1, S1, S2, S3, S5
2	K1, K2, S2, S3, S5
3	K1, K2, S1 S3, S4, S5
4	A1, A2, A3, A4
AQF Program Learning Outcomes addressed in	Associated AQF Learning Outcome Descriptors
this subject	for this subject
1	K1, S1, S2, S3, S5

Learning Outcome Descriptors at AQF Level 8

Knowledge

K1: coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines

K2: knowledge of research principles and methods

Skills

- S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence
- S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas
- S3: cognitive skills to exercise critical thinking and judgement in developing new understanding
- S4: technical skills to design and use in a research project
- S5: communication skills to present clear and coherent exposition of knowledge and ideas to a variety of audiences

Application of Knowledge and Skills

- A1: with initiative and judgement in professional practice and/or scholarship
- A2: to adapt knowledge and skills in diverse contexts
- A3: with responsibility and accountability for own learning and practice and in collaboration with others within broad parameters

A4: to plan and execute project work and/or a piece of research and scholarship with some independence

1. Learning resources

Insert texts, printed notes and/or software required

2. Assessment

Exam/assignment/classwork breakdown							
Exam	60%	Assignment	10+15+15%	Class work	Enter %		
Assignment due dates		Week 5	Week 10	Week 12	Click here to		
					enter a date.		
Approximate exam date				TBA	_		

Institution honours program details

Weight of subject in total honours assessment at host department	8.3%
Thesis/subject split at host department	31.25%
Honours grade ranges at host department:	
H1	80-100%
H2a	70-79 %
H2b	60-69 %
Н3	50-59 %