

AMSI Online: Honours and Masters Subject Guide

Elliptic Functions, Elliptic Curves and Modular Forms

Semester One, 2026

Administration and contact details

Host department	School of Computer and Information Sciences
Host institution	University of Newcastle
Name of lecturer	Florian Breuer
Phone number	0240339609
Email address	Florian.breuer@newcastle.edu.au
Homepage	https://carmamaths.org/breuer/
Name of honours coordinator	Bishnu Lamichhane
Phone number	0249215529
Email address	bishnu.lamichhane@newcastle.edu.au
Name of masters coordinator	
Phone number	
Email address	

Subject details

Handbook entry URL	
Subject homepage URL	
Honours student hand-out URL	
Table in a price of (about and and data)	46.5.1
Teaching period (start and end date):	16 February – 24 April 2025
Exam period (start and end date):	27 April – 7 May 2025
Contact hours per week:	3
ACE enrolment closure date:	16 February 2025
Lecture day(s) and time(s):	TBC
Description of electronic access arrangements	Canvas LMS
for students (for example, LMS)	

Subject content

1. Subject content description

We all know that trigonometric functions are periodic, e.g. $\cos(x+2\pi)=\cos(x)$, so $\cos(x+2\pi)=$

Elliptic curves, meanwhile, play a central role in number theory and cryptography. Varying elliptic curves (by varying the periods of the underlying elliptic functions) leads to *modular forms*, which also play a central role in number theory – Marting Eichler once quipped that "the five basic operations of arithmetic are addition, subtraction, multiplication, division and modular forms."

In this course, we will start with elliptic functions, then move to elliptic curves (over the complex numbers and also other fields) and outline how they fit into various modern topics. Finally, we will study modular forms and see how they allow us to solve various problems from number theory.

2. Week-by-week topic overview

3. Assumed prerequisite knowledge and capabilities

A first course in complex analysis is all that is required. Familiarity with some abstract algebra and number theory would be helpful.

4. Learning outcomes and objectives

Students will

- Understand basic concepts of elliptic functions, elliptic curves and modular forms
- Appreciate the interrelations between these topics and the rest of Mathematics
- Solve problems and write their solutions as clear, correct mathematical arguments.

AQF specific Program Learning Outcomes and Learning Outcome Descriptors (if available):

AQF Program Learning Outcomes	Associated AQF Learning Outcome
addressed in this subject	Descriptors for this subject
Insert Program Learning Outcome here	Choose from list below

Learning Outcome Descriptors at AQF Level 8

Knowledge

K1: coherent and advanced knowledge of the underlying principles and concepts in one or more disciplines

K2: knowledge of research principles and methods

Skills

S1: cognitive skills to review, analyse, consolidate and synthesise knowledge to identify and provide solutions to complex problem with intellectual independence

S2: cognitive and technical skills to demonstrate a broad understanding of a body of knowledge and theoretical concepts with advanced understanding in some areas

S3: cognitive skills to exercise critical thinking and judgement in developing new understanding

S4: technical skills to design and use in a research project

S5: communication skills to present clear and coherent exposition of knowledge and ideas to a variety of audiences

Application of Knowledge and Skills

A1: with initiative and judgement in professional practice and/or scholarship

A2: to adapt knowledge and skills in diverse contexts

A3: with responsibility and accountability for own learning and practice and in collaboration with others within broad parameters

A4: to plan and execute project work and/or a piece of research and scholarship with some independence

5. Learning resources

Course notes will be provided as the course progresses. Useful reference include:

- J.H. Silverman, "The arithmetic of elliptic curves" (Chapter VI)
- J.H. Silverman, "Advanced topics in the arithmetic of elliptic curves" (Chapter I)
- M. Köcher & A. Krieg, "Elliptische Functionen und Modulformen" (in German, sorry)
- T. Tao, "246B, Notes 3: Elliptic functions and modular forms"
 (https://terrytao.wordpress.com/2021/02/02/246b-notes-3-elliptic-functions-and-modular-forms/)

6. Assessment breakdown

Exam	50%
Assignment	50%
Class work	Enter %

Assignment due dates	Exam date (approximate)
6 March, 17 April 2025	4 May 2025
Click here to enter a date.	
Click here to enter a date.	
Click here to enter a date.	

Institution honours program details

Weight of subject in total honours	10 units of 80 total
assessment at host department	
Thesis/subject split at host department	40 units of 80 total
Honours grade ranges at host department	
H1	85-100
H2a	75-84
H2b	65-74
H3	50-64

Institution masters program details

Weight of subject in total masters assessment at host department	
Thesis/subject split at host department	
Masters grade ranges at host department	
H1	Enter range %
H2a	Enter range %
H2b	Enter range %
Н3	Enter range %